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ABSTRACT

Our hypothesis is that a highly sensitive and highly specific CAD scheme, incorporating
unique preprocessing techniques and advanced Decision Theory methods, can detect masses
and improve the performance of mammographers. To test this hypothesis, we propose to
construct a CAD system from two key components: 1) a highly sensitive mass detector, and
2) statistical models designed to reduce false-positives. We feel that it is essential to
develop a tool that can identify a high percentage of masses, both spiculated and
nonspiculated. It is important for computerized tools to detect as many masses as
possible, but not to detect too many regions that are not actual masses. Thus, our program
will first concentrate on finding many suspicious regions. Once suspicious regions are
identified within the mammogram, we will explore several classification techniques to
determine whether the regions are actually masses or some other structure in the breast.
The techniques we plan to explore, for both detecting masses and classifying them, include
standard, well-known techniques as well as new and novel approaches.
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INTRODUCTION
The most effective early-detection tool for breast cancer currently is screening

mammography. To provide a reliable and efficient second-reader to aid mammographers,
research has been directed towards developing computer-aided detection (CAD) tools. Although
these tools have shown promise in identifying calcifications, detecting masses has proven
relatively more difficult.

For this study, we proposed that a highly sensitive and highly specific CAD scheme,
incorporating unique preprocessing techniques and advanced Decision Theory methods, could
detect masses and improve the performance of mammographers. The proposed CAD system
has two key components: 1) a highly sensitive mass detector, and 2) statistical models designed
to reduce false-positives.

This pre-doctoral fellowship covers two different students - David Catarious, mentored
by Dr. Carey Floyd, and Swatee Singh mentored by Dr. Joseph Lo. It was originally awarded to
David Catarious, who graduated in August 2004 from Duke University with his Ph.D. A
Computer-Aided Detection System for Mammographic Masses (reportable outcome #12) and is
now working as a Congressional Science Fellow (outcome #13). Parts of the original aims were
concluded as part of that dissertation research. The Army authorized the transfer of the
remaining fellowship to Swatee Singh in November of 2004. The progress for the 2003-04 first
year of this fellowship is summarized in the report below.

BODY
Task 1: Develop and test unique pre-processing techniques on mammographic

regions of interest (ROIs)
In the search for an effective method to both enhance possible masses and reduce the

influence of anatomical noise contributed by the background structure, four preprocessing
techniques were explored: unsharp masking; local histogram equalization; local region
standardization; and combining the previous three techniques with principal component
analysis. Among the first three preprocessing techniques, unsharp masking was seen to give
best performance. Combining these three techniques was found to have no advantage when
compared to using just unsharp masking alone. Hence, it was decided that unsharp masking
would be used to compensate for background nonuniformity. This task was concluded on
schedule.

Task 2: Develop and test the initial mass detection algorithm on preprocessed
ROIs from task I

After preprocessing, the images were searched for potential masses with a Difference of
Gaussians (DOG) filter. Three parameters needed to be specified: the size of the filter template
and the two standard deviations of the constituent Gaussians, (5 1 and (F2. To gather the data
required for this task, a total of thirty DOG filters were employed as detection filters over the
study database. The study database consisted of 181 CC-view lumisys-scanned mammograms
in which over 67,000 potentially suspicious regions are identified. The influence of each of the
three parameters of the DOG filter on the following performance measures was studied:

1) Various Properties of the detected regions: It was found that as the size of the filter template
increases, the values of the peak response to the DOG filter decrease. Of the 24 features that
demonstrate statistically significant differences in mean value across the values of or 1 and 02,

only 6 effectively differ: area, major axis length, peak output of the DOG filter, correlation,
entropy, and information measure of correlation one. Each of these features increases with both
a 1 and 0r2.

2) The number of true and false positive regions detected:
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Parameter Parameter Average Average
Value Sensitivity % FPpl

Template Size 48 96.04 11.75
(mm 2) 56 97.5 11.44

64 97.5 11.29
01 4 97.92 14.34

(mm) 5 97.22 10.91
6 96.18 8.79
7 94.44 7.26

0F2 5 97.62 17.61
(mm) 6 97.92 12.33

7 96.53 9.28
8 94.44 7.26

Table 1: The effect of parameters on the malignant sensitivities and false positives per image. For larger filter sizes
(values of sigma's), the number of false positives decreases.

As the template size increases from 48 to 64 mm 2, both the initial sensitivity and number of false
positives per image (FPpl) slightly improve. However, for oF 1 and 0V2, sensitivity and FPpl
demonstrate an inverse relationship. As oa increases, almost half the false positives are
eliminated at a relatively low cost of 3.5% reduction in sensitivity; (02 eliminates approximately
60% of false positives for the same small decrease in sensitivity.

In order to achieve a compromise among the sensitivity, false positive rate, and the
classification performance of the best features, the optimal combination of parameters may be a
medium-sized filter template, a small (Y 1, and a large 02. The medium range of template sizes
can achieve slight increases in the false positive rate at no cost in sensitivity. Since increasing
a2 more aggressively eliminates false positives, a compromise between filter sensitivity and
false positive rate could be achieved by mixing a large 02 with a small cy 1. Based on this study,
it was concluded that the DOG filter employed for our system would be constructed of
Gaussians with standard deviations of 4.4 mm and 9 mm (22 and 45 pixels). The size of the
DOG filter template was set as a square of side 54 mm (270 by 270 pixels). This approach was
also applied to detection of lung nodules in chest radiography, resulting in co-authorship for the
student fellow in 3 proceedings papers at SPIE, the primary scientific conference for medical
imaging (reportable outcomes #1, 7, and 11). This task was concluded on schedule.

Task 3: Identify potential masses from ROIs
To distinguish suspicious regions from the rest of the image, we employed a multilevel

thresholding technique similar to that used by previous researchers (1-3). A set of thresholds
was defined based on the gray level histogram of the filtered image and for each level a new
image containing suspicious regions was created. To combine these images, the "duration" of
the regions was calculated. Although the duration image technique can accurately identify the
most suspicious regions in the image, the segmentations of the masses do not reflect the
detailed morphology of the mass. The inaccuracy of the method arises mainly because the
object borders are determined from the filtered images, not the original images.

As such, in the final version of the CAD system, the duration image technique has been
replaced by a segmentation routine using an iterative, gray level, linear segmentation
procedure. This modified procedure begins by examining a ROI that has been identified by the
CAD system as containing a suspicious region. Unsharp masking is applied to the ROI to
compensate for background nonuniformity. The procedure then iterates by estimating the pixels
interior and exterior to the object, determining an optimum gray level threshold to separate the
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interior and exterior pixels, and constraining the resulting object border. The procedure halts
when a stopping criterion has been achieved. A comparison of the developed segmentation
algorithm to the previous segmentation procedure is shown in the figure below.

(a) (b) (C) (d)

Fig 1 :(a) Three masses (two malignant, one benign) extracted from the original mammographic image, (b) the outline
of the mass provided by the DDSM, (c) the segmentation provided by the duration image technique, and (d) the
segmentations computed with the new segmentation routine.

The results for this task have been published in SPIE (reportable outcomes #9) and Medical
Physics (#8 as first author and #11 as co-author), the primary peer-review scientific journal in
the field. This task was completed on schedule.

Task 4: Extract shape and textural features from potential masses
For this task, thirteen morphological features were extracted from each suspicious

region - area, major axis length, minor axis length, eccentricity, area of the convex hull,
equivalent diameter, solidity, extent, and circularity. Also as part of morphological features, the
mean, peak, standard deviation, and value at the region's centroid were extracted from the
regions' response to the DOG filter. From each suspicious region, six features were extracted
that describe the region's boundary. Each of the boundary features is derived from the regions'
normalized radial lengths (4): mean, standard deviation, entropy, area ratio, zero crossing
count, and range. The remaining fifteen features describe the textural properties of the identified
suspiciousregions: contrast, average radial gray level change, and the thirteen Haralick et all
(5) features. In total we extracted 34 features for each of the approximately 9000 potentially
suspicious regions in 1,413 images. This work was the basis for a first-author proceedings
paper at SPIE (reportable outcome #6). This aim was accomplished on schedule.

For the development of the classification stage of the CAD system in the next
task, we studied numerous rules that would designate which of the suspicious regions
correspond to the true positives in the images. Based on this study, we adopted a rule that
required the distance between centroids of the true positive and suspicious region to be within
16 mm of each other and an area of overlap between the two regions of 9%.

Task 5.1: Examine linear classification techniques on features extracted to
separate masses from non-masses

To reduce the complexity of the predictive models and avoid overtraining problems, we
needed a way to reduce the number of features that would need to be computed for
determination of the malignancy of a mass. In the stepwise feature selection algorithm
implemented for this research, a Fisher's linear discriminant is employed for the internal
classifier. After examining different variants of the linear discriminants, we found that the
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Fisher's linear discriminant is easily implemented as an iterative process. Hence it was deemed
an ideal choice to calculate the threshold values. Several methods to train the discriminant
function were explored - such as K-fold cross validation, and resubstitution. For the figure of
merit (FOM) four choices were examined - AUC, AUCp, minFPF, and the Mahalanobis distance
between mean values of the decision variables in one class compared to the other.

The results for the resubstitution method for
the four FOMs are shown in the ROC
curves of figure 2. It was found that for all

S0.8 . .. .the FOMs, there is no difference between

U the curves created using the different
r • .6 training algorithms. Also, there was littleS AUC difference in performance of the two training

"N l .... Mahal. Dist, methods.S0.4 . .......... ....... -• ' m . P i

o 2  . Other linear classifiers were explored and
0.2 ......... their results have been published in 4 co-

authored SPIE proceedings papers
*.(reportable outcomes #2, 3, 4, 5).

0 0.2 0.4 0.6 0.8 1
False Positive Fraction

Fig 2: The average ROC curves over 28 trials for each FOM with training method resubstitution

KEY RESEARCH ACCOMPLISHMENTS
* Optimized parameters of a Difference of Gaussians filter for initial detection of potentially

suspicious regions in digitized mammograms, resulting in a final filter that maintains high
sensitivity while improving specificity substantially.

° Applied the optimized filter to 1,413 digitized images from the Digital Database for
Screening Mammography and identified approximately 9000 potentially suspicious
regions.

• Extracted a set of 34 possible cancer descriptors for each of the 9000 potentially
suspicious regions, including morphological, boundary, and texture features.

° Examined various linear discriminants and implemented an iterative linear discriminant
for our CAD system which merges the extracted features to predict whether the
suspicious region contains an actual mass or a false positive.

REPORTABLE OUTCOMES
1. Abbey CK, Eckstein MP, Shimozaki SS, Baydush AH, Catarious DM, Jr, Floyd CE, Jr.

Human-observer templates for detection of a simulated lesion in mammographic images.
In: SPIE Medical Imaging 2002. San Diego, CA, 2002.

2. Baydush AH, Catarious DM, Abbey CK, Floyd CE, Jr. Computer Aided Detection of
Masses in Mammography using Sub-region Hotelling Observers. Medical Physics 2003;
30:1781-1787.

3. Baydush AH, Catarious DM, Floyd CE, Jr. Computer aided detection of masses in
mammography using a Laguerre-Gauss channelized Hotelling observer. In: Medical
Imaging 2003: Image Perception, 2003.

4. Baydush AH, Catarious DMJ. Novel use of the Hotelling Observer for computer-aided
diagnosis of solitary pulmonary nodules. In: SPIE Medical Imaging 2001: Image
Processing. San Diego, CA, 2001; 1918.

5. Baydush AH, Catarious DM, and Floyd CE, Jr. Incorporation of Laguerre-Gauss
channelized Hotelling observer into a mammographic mass CAD system. In:
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International Workshop on Digital Mammography (2004).
6. Catarious DM, Baydush AH, Abbey CK, Floyd CE, Jr. A Mammographic mass CAD

system incorporating features from shape, fractal, and channelized Hotelling observer
measurements: preliminary results. In: Hanson K, ed. Proc. SPIE Int. Soc. Opt. Eng. San
Diego, CA, 2003; 111.

7. Catarious DM, Jr, Baydush AH, Floyd CE, Jr. Initial development of a computer-aided
diagnosis tool for solitary pulmonary nodules. In: SPIE Medical Imaging 2001. San
Diego, CA, 2001; 710.

8. Catarious DM, Baydush AH, Floyd CE, Jr. Incorporation of an iterative, linear
segmentation routine into a mammographic mass CAD system. Medical Physics 2004.

9. Catarious DM, Jr, Baydush AH, Floyd CE, Jr. Development and application of a
segmentation routine in a mammographic mass CAD system. In: SPIE Medical Imaging
2004. San Diego, CA, 2004; 801.

10. Samei E, Catarious DM, Jr, Baydush AH, Floyd CE, Jr, Vargas-Voracek R. Bi-plane
correlation imaging for improved detection of lung nodules. Import. SPIE Int. Soc. Opt.
Eng. San Diego, CA, 2003; 284-297.

11. Tourassi GD, Vargas-Voracek R, Catarious DM, Jr. Computer-assisted detection of
mammographic masses: a template matching scheme based on mutual information.
Medical Physics 2003; 30:2123-2130.

12. Ph.D. thesis: David Catarious, A computer-Aided Detection System For Mammographic
Masses, Department of Biomedical Engineering, Duke University, 2004, (available upon
request).

13. Job Placement: David Catarious, Congressional Science Fellow with The Honorable
Edward J. Markey, U.S. House of Representatives.

CONCLUSIONS
We developed the high sensitivity first stage of our CAD system to identify suspicious

regions most indicative of malignancy. Pre-processing techniques were used to help identify
potential masses from ROIs. A large study was performed to determine optimal DOG
parameters to maximize results. We also extracted thirteen textural, morphological, and
boundary descriptors of these suspicious regions as mathematical descriptors of the properties
of these suspicious regions. Various linear classification techniques were employed to
determine the optimum classifier. This project has built the framework for the second stage of
the CAD system (to be reported next year) - the high specificity stage that will then reduce the
number of false positives per image while maintaining nearly all of actual malignancies.
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Human-observer templates for detection of a simulated lesion in
mammographic images

Craig K. Abbey*
Dept. of Biomedical Engineering, University of California, Davis, CA

Miguel P. Eckstein and Steven S. Shimozaki
Dept. of Psychology, University of California, Santa Barbara, CA

Alan H. Baydush, David M. Catarious, Carey E. Floyd,
Dept. of Radiology, Duke University, Durham, NC

ABSTRACT

We describe a probit regression approach for maximum-likelihood (ML) estimation of a linear observer template from
human-observer data in two-alternative forced-choice experiments. Like a previous approach to ML estimation in this
problem [Abbey & Eckstein, Proc. SPIE, Vol. 4324, 20011, our approach does not make any assumptions about the
distribution of the images. The previous approach utilized a regularizing prior distribution to control the degrees of
freedom in the problem. In this work, we constrain the observer template to be represented by a limited number of linear
features. Standard methods of probit regression are described for estimating the feature weights, and hence the observer
templates.

We have used this probit regression method to estimate human-observer templates for the detection of a small (5mm
diameter) round simulated mass embedded in digitized mammograms. Our estimated templates for detecting the mass
contain a band of heavily weighted spatial frequencies from 0.08 to 0.3 cycles/mm. We show comparisons between the
human-observer template data, and the templates of a number of linear model observers that have been investigated as
perceptual models of the human.

Keywords: Visual signal detection, model observer, observer template, classification image, forced-choice detection.

1. INTRODUCTION

The last few years have seen the development of new psychophysical techniques for examining visual strategy in noise-
limited detection and discrimination tasks1

-
7. The basic idea behind these techniques is to utilize the images associated

with correct responses and those associated with incorrect responses in order to estimate a linear observer template. As
such, the estimated templates, also known as "classification images", can be used as a way to understand how observers
perform visual tasks and as an alternative to comparisons of performance used to validate perceptual models.

Recently5 , we have described Maximum-Likelihood (ML) and Maximum-a-Posteriori (MAP) procedures for estimating
observer templates from real clinical images, as opposed to computer-generated noise textures with a specified Gaussian
distribution in two-alternative forced-choice (2AFC) experiments. Because of the large number of free parameters in an
observer template (typically the number of parameters is equal to the number of pixels in an image), quadratic priors
were used to regularize the template estimates. Here we adopt a somewhat different approach of constraining the
template to be represented by a relatively small number of linear features. By using a limited number of features, the
problem of finding the ML estimates of the observer template is reduced in degrees of freedom to the problem of finding
the ML estimates of the feature weights. We approach this estimation problem through standard methods of probit

Corresponding Author. ckabbey@ucdavis.edu, phone 530-754-9676; fax 530-754-5739; Dept. of Biomedical
Engineering, 1 Shields Ave, Davis, CA 95616.

Medical Imaging 2002: Image Perception, Observer Performance,
and Technology Assessment, Dev P. Chakraborty, Elizabeth A. Krupin ki, 25
Editors, Proceedings of SPIE Vol. 4686 (2002) © 2002 SPIE • 1605-740/02/$15.00



regression 8' 9, which implicitly assume a Gaussian-distributed internal noise component in the observer's decision
process.

We use the probit-regression approach described here to estimate human-observer templates for the task of detecting a
simulated lesion in mammographic image backgrounds. Our image set consists of subregions drawn from a database of
digitized mammograms. A total of five subjects have participated in 2AFC detection experiments to obtain
psychophysical decision data from human observers. Human-observer templates are estimated using probit regression
for a set of features that are defined by radial-frequency bands in Discrete Fourier-Transform (DFT) domain. These
templates are compared to the templates of a number of proposed linear model observers. The model observers
considered include nonprewhitening matched filter models, a prewhitening matched filter model, and implementations of
two difference-of-Gaussian (DOG) channel models.

2. METHODS

2.A. The Linear Observer-Template Model

Here we briefly review the linear-template model for 2AFC detection tasks. A more complete treatment of this model in
the context of estimating observer templates is given by Abbey and Eckstein6'7.

In a 2AFC detection task, an observer is shown two images in each trial asked to identify the image that contains the
signal. We will denote an image generically by the vector g. We will refer to the signal present image as ge, and to the
signal-absent image as g-. The linear template model assumes that the observer performs the 2AFC task by formulating
an internal-response variable to each image,

2 =w'g + +c (2.1)

= wg- +e-
where w is the observer template - a vector of linear weights - and E is the observer's internal noise. In a given trial
of a 2AFC experiment, the observer correctly identifies the signal-present image if 2+ > 2-, gets the trial incorrect
otherwise. We define the trial score as 1 if the observer gets the trial correct, and zero otherwise (we assume continuous
densities on the responses, and hence an equivocal decision, A+ = 2-, is a zero-probability event).

We can define a variable, oi, to be the score (the o indicates outcome) of the ith trial. If the observer gets this trial
correct, then oi = 1. Otherwise oi = 0. Hence,

oi = step( 2 - ).

= step (w'Ag, + Ae ) (2.2)

where Ag, = g' - g-, and Ae, = el - e,-. As defined, o, is a Bernoulli random variable. If we can assume that AE, is a

Gaussian-distributed random variable with zero mean, and a variance of 2c,, then the probability that oi =1, under the

Gaussian assumptions on Ae, is
(w'Agi

Pi =0( , i,' (2.3)

where (D is the Gaussian cumulative density function. Note that the probability is invariant to a common scaling of w
and a• Hence for the purposes of this work, we can fix the magnitude of the internal noise component to an arbitrary

value of or = 1, yielding

A =(D(W g). (2.4)

The binary nature of a trial score and the definition of the score probability in Eqn (2.4) yield a conditional Bernoulli
probability distribution for oi given the observer template w and the difference image, Ag,, of

26 Proc. SPIE Vol. 4686



Pr(o, lAg, w) = pO, (1-pi)1-0 . (2.5)

If the observer makes more than one pass through the data, then the score can be any integer value between 0 and NPa,,,
the total number of passes through the data. In this case we can consider the score to be distributed with the more
general Binomial distribution

Pr(oi[Agi,w)_ Npam' (1iNpiS-o' (2.6)o, !( Npa ---- 0o ) !r (1-i )P'° 26

This probabilistic link between the observer template and the observed trial score is the basis for estimating the observer
template.

The average of the observer scores (divided by the number of passes through the data) is an estimate the proportion of
correct responses,

1c NT - N,'
S(2.7)

7-T i=1 NPam

where N, is the total number of trials in the experiment. The proportion of correct responses is often used to obtain a
detectability measurel°, dA, which is defined via the inverse of the cumulative normal distribution function as

d. = %1r2-,ID-1 (PC) •(2.8)

2.B. Probit Regression of Trial Scores

The score probability in Eqn (2.4) defines what is known as a probit-link function in the categorical regression
literature8' 9. The link function relates a linear combination of the parameters of interest - the values of the observer
template w in this case - to the mean probability of a binomial random variable via the cumulative Gaussian
distribution function.

One potential problem with estimating the observer template from the resulting statistical model is the large number of
degrees of freedom in the observer template. Since the observer template has as many elements as there are pixels in g,
the number of free parameters can be quite large in an unconstrained model. Generally there will be more parameters in
the observer template than there are trials in the 2AFC experiment, which leads to the uncomfortable situation of having
more parameters than data points. In previous work 5, we have addressed this problem through the use of a regularizing
prior distribution of the observer template data. In this work, we reduce the degrees of freedom by assuming that the
observer template can be represented by a relatively small set of known linear feature vectors, vk, where k runs from 1
to the number of features, N,. The feature vectors are linearly related to the observer template by the linear equation

w= VP, (2.9)
where the columns of the matrix V are the linear feature vectors (vk ), and P is a vector of feature weights with NF
elements. The goal is now to estimate the elements of P• instead of the entire observer template. The observer template
can be synthesized from the feature weights by using Eqn (2.9). The use of feature vectors reduces the degrees of
freedom of the problem from the number of pixels in the image to the number of features chosen to represent the
observer template. In Section 3 below, this constitutes a reduction from 16,384 free parameters for the entire template to
a total of 33 free parameters in the constrained representation.

To use probit regression methods on the feature weights, we must link them to the score probabilities. This can be
accomplished by substituting Eqn (2.9) into Eqn (2.4). The resulting expression for the score probability can be written

p = D([Xp],) (2.10)
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Figure 1. Mammographic sample image preparation. This schematic shows the process of extraction and background subtraction used
to create the mammographic images used in the psychophysical studies.

where [XI],. is the ith element of the matrix-vector product XIP, and the matrix X is defined as

[X],, - Ag'v, (2.11)
,12

A standard method of solving for the free parameters in P is known as Fisher Scoring or alternatively as Iterative

Reweighted Least Squares9. We begin this procedure by assembling the score data from the 2AFC trials (with Nl,•
total passes through the data) into a vector y. The parameter estimation method consists of assuming an initial value of
i = 0, and iterating

0 -1+) = PH¢" + ( XtD (")X)-1 XV (y - m'"o) (2.12)

where the vector m(') is the predicted mean score value assuming the feature weights,

and the diagonal matrix D(') is the conditional covariance of score data assuming the feature weights,6 " ]i ,a )( X ( ) ] (1- (D([Xp(') ] )) .
We find this algorithm to converge quickly (typically within 10 iterations) to the maximum-likelihood estimate, P , and
the asymptotic error covariance matrix associated with this estimate is given by

KO = (X DX) ', (2.13)

where D is D(') above, evaluated at I. Because X is a highly rectangular matrix (its dimensions are N, by N, ), the
matrix inverses necessary for Eqn.s (2.12) and (2.13) are only computed for matrices of size NF by N,.

3. RESULTS
3.A. Images for Psychophysical Studies

The images used in the psychophysical studies reported here came from the Digital Database for Screening
Mammography, a database of digitized mammograms available at the University of South Floridai. The two criteria
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Figure 2. The left plot shows the power spectrum of the mammographic sample images. The slope of the linear fit (in the log-log
coordinates of the plot) indicate that the noise power falls off as radial frequency raised to the power -2.87. The right plot shows the
normalized histogram of the images with a Gaussian distribution fit to the central portion of the histogram.

used for inclusion in this work were that the patient was classed normal and that the mammographic films were digitized
with a Lumisys scanner (Lumisys Inc., Sunnyvale, CA) resulting in a 10-bit digitized image with intensity proportional
to log exposure and a pixel size of 0.05mm. Some 656 distinct patches of 1,024 by 1,024, 10-bit data internal to the
breast were extracted from cases derived from 82 patients.

Figure 1 shows how these 656 distinct patches were turned into an initial set of 5,904 sample images for use in the
psychophysical studies. From each mammogram patch, 9 overlapping 512 by 512 subregions were extracted. The
subregions were centered at 1/4, 1/2, and 3/4 of the distance between the image edges in both the vertical and horizontal
directions. Because our intent was to study the effect of mammographic structure on detection of a simulated mass, we
fit a bilinear function to each subregion and subtracted it from the image to enhance the presence of structure in the
images. The parameters of the bilinear function were computed by least-squares fitting to all the pixels in the subregion.
After the background had been subtracted, the image was scaled so that the average deviance was 20 gray levels (GL)
and the image was added to a pedestal of 128 GL, and finally down-sampled by a factor of 4 for an image size of 128 by
128 with a pixel size of 0.2mm. The scaling and pedestal were chosen so that the images would reside in the middle of
the dynamic range on an 8-bit display of a monitor with a linear lookup table. The down-sampling was performed so
that the resulting images were of approximately the same size as the film. The 5,904 images were each examined by the
author, and 914 of them were removed from the test images. The main criteria for culling the images were that they
were too close to the edge of the breast, or there were strong edge artifacts where the film digitizer extended past the
edge of the film. The resulting 4,990 images were used for the psychophysical studies.

Figure 2 shows some statistical properties of the mammogram patches. We computed an average noise-power spectrum
(NPS) of the images by subtracting the mean image and then windowing the images with a 4th-order Butterworth filter
and computing the average of the squared magnitude of the DFT. The radial average of this NPS is plotted with respect
to radial frequency on a log-log scale on the left side of Figure 2. The NPS assumes a nearly linear falloff in the log-log
plot from 0.02 to 0.3 cycles/pixel (0.1 to 1.5 cycles/mm in the films). The NPS drops by over 3 orders of magnitude in
this frequency range. The slope of the log-NPS versus log-frequency line is -2.87. This is very close to the values
reported by Burgess12 . One difference between the NPS plotted here and that reported by Burgess is that the NPS goes
below the fitted line at the lowest spatial frequencies. We attribute this to the background subtraction method we used,
which will tend to reduce the variability at low spatial frequencies.

The right side of Figure 2 shows the normalized histogram for the entire image set along with a fitted Gaussian
distribution (note that the logarithmic y-axis gives the Gaussian distribution its parabolic profile). We see that the
Gaussian distribution provides a good fit from approximately 60 to 200 GL. The histogram and the Gaussian fit do not
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Figure 3. The signal profile used for the psychophysical experiments. On the left the radial profile of the signal is given in terms of
distance from the signal center (1 pixel is 0.2mm on a mammographic film). On the right, the signal profile is given as a function of
radial frequency.

part until the histogram has fallen off by over two orders of magnitude. The spikes on both ends of the gray-scale range
indicate that a small percentage of gray levels were truncated to fit the display range of the monitor.
Figure 3 shows the spatial and spatial-frequency profiles of the signal used to simulate a mass for our experiments. The

radial profile of the mass was specified by the function

S(,) = A(1-(r/R)2 )/2, (3.1)

for pixels whose distance to the signal center, r, was less than the signal radius, R = 12.5 pixels (2.5mm). For pixels
whose distance from the signal center was more than R , the signal profile was set to zero, yielding a signal diameter of
25.0 pixels (5.0mm). This profile has been used previously by Burgess' 3 and others1 4 who found that it fit nodule data
obtained by Samei et Al.15 In the experiments, the signal-present images had this signal profile added at a signal
amplitude, A.

3.B. Psychometric Study

A total of 5 observers participated in the psychophysical studies. Two of these observers (observers 1 & 2) were authors
of this paper (CKA and SSS). The other three observers were naive subjects compensated for participating in the
studies. All observers have prior experience as subjects of visual psychophysics experiments. After an initial round of
training (50-100 2AFC trials), observers participated in a psychometric study, which evaluated detection performance as
a function of signal amplitude.

The signal amplitudes used in the studies ranged from 18 to 50 GL (14% to 39% relative contrast). At each of the signal
amplitudes, 200 trials/observer were collected and the proportion of correct responses was computed. The proportion-
correct data was converted to detectability according to Eqn (2.8), and plotted in Figure 4 along with linear fits to each
observer. We can see in this figure that the observers appear to be reasonably well fit by lines with a y-intercept near or
slightly below the origin. The relatively small magnitude of the y-intercept, which is not significantly different from
zero for any observer, and the generally good agreement with linear fits suggest that our observers may be well
described by the linear model necessary for template estimation. Burgess16"17

,18 has found similar psychometric
functions for compact aperiodic signals embedded in noise.

3.C. Observer Template Studies

A second purpose of the psychometric study was to find a reasonable signal amplitude for obtaining data on which to
estimate human observer templates. We hoped to achieve a target proportion correct in these experiments between 0.80
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Figure 4. Psychometric observer performance data. plotting detectability as a function of signal amplitude along with linear fits for
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Figure 5. Spatial-frequency band features used to represent the estimated observer templates. The features are defined as radial
frequency bands in the DFT domain and then windowed in the spatial domain to reduce ringing artifacts. The plot shows the radial
frequency profiles of the features and the images show the spatial appearance of a few selected features.

and 0.85, and based on the psychometric plots in Figure 4, a signal amplitude of 24.0 GL (18.8% contrast) was chosen.
With this signal amplitude, observer performance ranged from 0.79 to 0.88 in terms of proportion of correct responses.
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After completing the psychometric studies, observers participated in the template experiments. The observer template
experiment comprised a total of 2,000 trials, and 3 of the observers (2, 3, and 4) made a second pass through the
experiment. For estimating human observer templates, we chose to represent the human observer template by a set of 33
radial frequency bands in the 2D Discrete Fourier Transform domain. These bands ranged from 0.00 to 0.25 cycles per
pixel (0.0 to 1.25 cycles/mm in the mammographic films) and extended well beyond the effective spectrum of the signal.
Each radial-frequency band had a bandwidth of 0.0078 cycles/pixel before being windowed in the spatial domain to
reduce ringing. The spatial window used was a 4th order Butterworth filter with a full-width at half-max of 50 pixels.
The radial frequency bands, after this windowing process, are plotted at the top of Figure 5. Images of a few of these
frequency-band features can be seen at the bottom of Figure 5. Note that the leftmost of these images (center frequency
= 0.0) is also an image of the spatial window.

The images at the top of Figure 6 show the estimated observer templates obtained from the estimation formula given in
Eqn (2.12). In addition to an estimated template for each observer, there is one image labeled "All" that consists of a
template estimated from the combined observer data. This template treats the score data from the five observers (with
three of these having two passes through the data) as if there were only one observer that made eight passes through the
data. While it is clearly not valid to ignore observer differences, we find that this composite data is good for visualizing
general trends in the individual observer results. The images generally show -an area of positive weighting near the
signal center, with a pronounced negative fringe starting about 10 pixels from the signal center. This negative surround
is fairly narrow relative to the signal size. Radial frequency plots of the observer templates are given at the bottom of
Figure 6 with error bars of width +/-I standard error computed from Eqn (2.13). The plots all show a pronounced band
of positive weights from radial frequencies of 0.015 to 0.06 cycles/pixel (0.08 to 0.3 cycles/mm). There also appears to
be some lower level oscillations at higher spatial frequencies. This oscillation is particularly well visualized in the
composite estimate from all the human observer data.

Figure 7 shows comparisons of the composite human-observer data with various model observers that have been
investigated as surrogates for human observers- The model observers are scaled so that their peak values match that of
the human-observer plot. In the upper left corner of Figure 7, we see comparisons with two nonprewhitening model
observers. The nonprewhitening matched filter (NPW) model observer simply uses the signal profile as the observer
template' 9

,
20 , and hence the frequency profile of this observer can be found on the right side of Figure 3. We also plot an

eye-filtered nonprewhitening (NPWE) observer 21 that consists of modulating the NPW frequency spectrum by a function
representing the contrast sensitivity of the human eye. The NPW observer does not capture any of the bandpass
character of the human observer data. The NPWE observer does have a bandpass structure, but the band has been
shifted to somewhat lower spatial frequencies than the human-observer data would indicate. It may be possible to
account for this mismatch by considering a different visual contrast sensitivity function. Both the NPW and NPWE
observers are outperformed by at least some of the human observers for this detection task (NPW proportion correct is
0.70; NPWE proportion correct is 0.82).

The upper right corner of Figure 7 shows the comparison with a prewhitened matched filter (PWMF) model observer.
The PWMF observer used here consists of modulating the signal frequencies by the computed noise-power spectrum of
the images (See Figure 2). The PWMF observer exhibits more low-frequency suppression than the human observer, and
oscillates strongly at higher spatial frequencies. The oscillations in the human-observer data appear to be in sync with
this model observer, although they are lower in magnitude. With a proportion correct of 0.93, the PWMF significantly
outperforms the human observers.

The frequency profiles of both 3-Channel and 10-Channel DOG Channelized-Hotelling model observers 22"14 are plotted
on the bottom row of Figure 7. Both channel models have been investigated previously for agreement with human
observer data' 4, and we refer the reader to the references given for a detailed description of their implementation. Each
plot shows the observer model implemented both with, and without internal noise in the channel responses. The 3-
channel DOG observers generally fit well at lower spatial frequencies, but diverged from the human-observer templates
at frequencies above 0.05 cycles/pixel. The 10-channel DOG observer without internal noise, like the PWMF, more
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Figure 6. Estimated human observer templates for the lesion detection task. The images at the top show the spatial appearance of the
human-observer templates estimated for the 5 observers and the template estimated from a composite dataset from all the observers.
The plots show the radial-frequency profiles of the observer templates with error-bars derived from the asymptotic covariance matrix
in Eqn (2.13).

strongly suppressed low spatial frequencies than the human observers. However, when internal noise was added to the
channel responses, the frequency profile of this observer more closely matched the human observer data at low spatial
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Figure 7. Comparisons of the composite human-observer data and model observer templates. The model observer profiles are
normalized so that their peak corresponds to the peak value of the human-observer data.

frequencies. The 10-Channel DOG plots also show how strikingly the inclusion of internal noise in the channel
responses can change the weighting scheme of the Channelized-Hotelling observer.

All the models tested here diverged to some degree with the human-observer data at frequencies above 0.05 cycles/pixel,
and this raises some concern about their applicability to modeling human observers. However, because both the signal
spectrum, and the NPS fall off steeply at higher spatial frequencies, it is not clear how much influence the higher spatial
frequencies have on the diagnostic task. On the left side of Figure 8, we plot the NPS - on a linear scale this time - to
show the preponderance of noise at low spatial frequencies. The average noise power is substantially reduced by 0.05
cycles/pixel, and an examination of Figure 3 shows that the signal spectrum is also substantially reduced. On the right
side of Figure 8, we plot the relative detectability of a PWMF that is constrained to frequencies less than or equal to the
x-axis value. The relative detectability is the ratio in detectability between this frequency-constrained PWTMF, and the
unconstrained PWMF. The plot tells us what percentage of the PWMF detectability is due to the diagnostic information
contained in spatial frequencies less than or equal to the x-axis value. Approximately 92% of the relative detectability
has been achieved by 0.05 cycles/pixel. This plot tells us that the majority of diagnostic information is contained in the
low spatial frequencies. Hence, the Channelized-Hotelling observers are fitting the human observers in the spatial
frequencies of greatest diagnostic relevance for this task.

4. CONCLUSION

In this work we have modified a previous approach 5 to maximum-likelihood estimation of observer templates in order to
use standard methods of probit regression. Like the earlier approach, this method rests on the assumption of a linear
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Figure 8. Plots of relative noise-power spectrum and relative detectability. The noise-power spectrum is equivalent to that plotted in
figure 2, but plotted on linear axes and made relative to the DC noise-power. The plot emphasizes the falloff in noise for frequencies
above 0.04 cyc/pixel. The relative detectability plot shows the ratio in detectability of a prewhitened matched filter that is only
allowed to use frequencies less than or equal to the value of the x-axis. This plot shows that the majority of useful information for
performing this task is in the lower spatial frequencies. For example deleting the entire image spectrum for frequencies above 0.06
cycles/pixel results in only a 5% reduction in detectability.

observer and Gaussian-distributed internal noise, and does not make assumptions about the distribution of the images
used to perform the task. Hence the method is appropriate for finding linear observer templates in signal-known-exactly
tasks involving patient structured backgrounds. The additional assumption necessary for the modification presented here
is that the observer template can be described by a linear combination of feature vectors. The feature vectors serve to
reduce the degrees of freedom of the estimation problem from the number of image pixels (16,384 in the studies reported
here) to the number of feature vectors (33 here). By casting the template estimation problem in terms of probit
regression, we can use standard procedures for estimating the feature weights (Fisher Scoring) and the associated error
covariance matrix.

We have applied this method to the task of detecting a small low-contrast simulated mass embedded in patient structured
backgrounds derived from a set of digitized mammograms. Observer psychometric functions for detecting the mass as a
function of lesion contrast show that our observers are reasonably well described by a line with a slightly negative y-
intercept, which provides some evidence for linear models. Human observer templates, estimated from one or two
passes through 2,000 2AFC trials, show that observers are using a band of spatial frequencies that extend from
approximately 0.015 to 0.06 cycles/pixel (0.08 to 0.3 cycles/mm in the film) and peaks between 0.03 and 0.04
cycles/pixel. There is also some evidence of oscillation at higher frequencies.

A number of comparisons are made between a conglomerate of all the human-observer data and various linear model-
observer templates suggested as representative of human observers in noise-limited visual tasks. The two
nonprewhitening observers we considered, a nonprewhitening matched filter and a nonprewhitening matched filter
modulated by a visual contrast-sensitivity function, tended to place too much weight on low spatial frequencies relative
to the human observers. Conversely, a prewhitened matched filter model demonstrated a suppression of low spatial
frequencies (less than 0.04 cycles/pixel) relative to the human observers, as well as demonstrating relative enhancement
of higher spatial frequencies. The fact that the prewhitened matched filter substantially outperforms the human
observers indicates that human-observer performance may be limited by an inability to fully suppress low spatial
frequencies. This, in turn, suggests that processing the image by filtering low spatial frequencies may improve human-
observer performance.

We also compared the human observer data to Channelized-Hotelling observer models derived from two difference-of-
Gaussian channel models. These models fit the human observer data at lower spatial frequencies, but both
implementations of the 10-channel DOG model diverge from the human observer data at frequencies of 0.05 cycles/pixel
and above. This divergence is a concern that we feel should be addressed in future work. However, we have shown that
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there is relatively little diagnostic information at frequencies above 0.05 cycles/pixel. Hence we conclude that the two
channel models implemented with internal noise in the channel responses, as well as the 3-Channel model without
internal noise, are fitting the human observer templates in the diagnostically relevant spatial frequencies for this task.
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We propose to investigate the use of the subregion Hotelling observer for the basis of a computer
aided detection scheme for masses in mammography. A database of 1320 regions of interest (ROIs)
was selected from the DDSM database collected by the University of South Florida using the
Lumisys scanner cases. The breakdown of the cases was as follows: 656 normal ROIs, 307 benign
ROIs, and 357 cancer ROIs. Each ROI was extracted at a size of 1024X 1024 pixels and sub-
sampled to 128X 128 pixels. For the detection task, cancer and benign cases were considered
positive and normal was considered negative. All positive cases had the lesion centered in the ROI.
We chose to investigate the subregion Hotelling observer as a classifier to detect masses. The
Hotelling observer incorporates information about the signal, the background, and the noise corre-
lation for prediction of positive and negative and is the optimal detector when these are known. For
our study, 225 subregion Hotelling observers were set up in a 15X 15 grid across the center of the
ROls. Each separate observer was designed to "observe," or discriminate, an 8 X 8 pixel area of the
image. A leave one out training and testing methodology was used to generate 225 "features,"
where each feature is the output of the individual observers. The 225 features derived from separate
Hotelling observers were then narrowed down by using forward searching linear discriminants
(LDs). The reduced set of features was then analyzed using an additional LD with receiver oper-
ating characteristic (ROC) analysis. The 225 Hotelling observer features were searched by the
forward searching LD, which selected a subset of 37 features. This subset of 37 features was then
analyzed using an additional LD, which gave a ROC area under the curve of 0.9412 + / - 0.006 and
a partial area of 0.6728. Additionally, at 98% sensitivity the overall classifier had a specificity of
55.9% and a positive predictive value of 69.3%. Preliminary results suggest that using subregion
Hotelling observers in combination with LDs can provide a strong backbone for a CAD scheme to
help radiologists with detection. Such a system could be used in conjunction with CAD systems for
false positive reduction. © 2003 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1582011]
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INTRODUCTION through screening mammography.3 Early detection of suspi-

Cancer is one of the most devastating and deadly diseases of cious regions helps improve patient outcome and is a key to
our time and is the second leading cause of death in the patient care. We firmly believe that development and appli-
United States.' The American Cancer Society estimates that cation of computer aided detection (CAD) techniques for the
in 2002 alone, breast cancer will be diagnosed in 203 500 automated detection of cancerous breast masses will have a
women and almost 40 000 women will perish.2 For women, great impact on early detection and hence on overall patient
breast cancer is the most common cause of cancer death. A outcome.
strong commitment to reducing cancer-related deaths has Currently, screening mammograms are taken and mam-
been put forth by the Department of Health and Human Ser- mographers examine the images to detect possible abnor-
vices. The prime method for detecting breast cancer is malities, some of which are masses. CAD systems have been
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researched and are commercially available4'5 which aid the
radiologist in detecting these suspicious regions and thus re- InputROI
duce missed cancers. Most CAD systems can be viewed as
two stages. Typically, the first stage uses some type of initial
processing, which has high sensitivity and low specificity, to
detect a set of potential masses. The second stage consists of SRHO I
classifying these suspicious regions using predictive model-
ing techniques (neural networks, cluster analysis, etc.) to re-
ject a large number of false positives. With this approach,
systems have been developed that effectively detect masses.
From the radiologist's point of view, the largest problem with Data Reduction
these systems is the false positives per image. It is this sec-
ond stage of the CAD system which we aim to improve.

Since we wish to help radiologists with the detection task,
we have chosen to base our approach on models of the radi- LD
ologist's vision system. We have pursued this approach pre-
viously in chest radiography 6 with great success. We feel that "
this new approach is innovative and needs to be investigated
thoroughly in mammography, as well. We propose that incor-
porating models from vision science into the classificatione ... ntial Mass??
process will help to reduce the number of false positives
while not reducing sensitivity. FIG. 1. Flow chart of three layer classifier.

For the study presented here, we propose to investigate
using subregion Hotelling observers (SRHOs) in conjunction
with linear discriminants (LDs) for the automated classifica- chart of this system is shown in Fig. 1. For this study, our
tion of regions as containing or not containing a mass. This three layer model7-10 is as follows: Layer 1 models the linear
type of classification could be incorporated into a CAD sys- portion of the visual system by using a grid of SRHOs. Layer
tem in the future to aid in false positive reduction. 2 models the data reduction in the visual process and will be

performed by forward searching LD. Layer 3 uses an addi-
tional LD to combine the reduced data set and to determine

METHOD final classification results.

We wish to continue examining incorporating models 1. La
from the human vision system into the classification stage of
CAD systems. Several proposed models7-10 of the vision The Hotelling observer (HO) is the optimal linear detector
system used to predict the performance of visual tasks have for a known signal, known background, and known covari-
utilized an initial linear feature extraction step followed by a ance matrix when statistics are approximately Gaussian."I

reductive feature processing step (usually nonlinear). We For real medical images, where we do not know the exact
have chosen to follow the multilayered general form of these signal or background, we use estimates of the signal, the
models (a linear mechanism followed by a nonlinear integra- general background, and the covariance matrix to calculate
tion of features to perform basic decision tasks). The advan- the set of linear weights for the suboptimal observer. These
tage of this approach is that we are not limited to linear observers are only suboptimal until the sample statistics (av-
features found in the human vision system, but rather we erage background, signal, covariance matrix) approach the
define these features using locally optimal linear discrimi- true distribution statistics. If enough samples are used, this
nants. approximation should not cause much reduction in perfor-

mance. The weights or template for the HO are multiplied by
the image data and summed to give a test statistic. This test

For this study, we will be investigating a SRHO system statistic can be used as a decision variable. The test statistic
similar to the one we developed and used for nodule classi- should be larger when the signal is present and smaller when
fication in chest radiography. 6 In that study, a three layer absent. In white noise, the HO reduces to a matched filter.
system was developed using SRHOs and artificial neural net- However, in medical images, which have correlated noise,
works (ANNs). The system investigated here will be altered the observer estimates a template to decorrelate the noise. 12

from the previous version by replacing the ANNs used in the HOs have been shown to be effective in tracking the perfor-
system with LDs. The reason for this change is to simplify mance of human observers for detection13-1 8 and as a means
the overall system and to come up with a single output tem- for measuring image quality.]'1 9-22

plate that can be used similar to a filter for mass detection. A Application of the HO to a large region of interest (ROI)
single filter of this sort can be incorporated via convolution is prohibitive, as too many image samples are needed to
to quickly find regions that "look" like centered ROIs, such estimate the covariance matrix.22 To overcome this difficulty,
as the ones the system presented here is trained on. A flow we have turned to the subregion Hotelling observer (a HO
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RO1 128 pixels m.

1 2 3 4 15 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

128 pixels 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75..

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 11 1112 113 114 11 116 117 118 119 120

121 122 123 12-4 125 12 127 128 129 130 131 132 133 134 135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

8x 8pixel 151 52 153 154I1 S5 156 157 158 159 160 161 162 163 164 165 FIG. 3. Average image of the (a) positive and (b) negative ROls.

SRHO 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

196 197 198 199 0020 20 2 0 203 204 205 206 207 208 209 210 larger "final set." This process continues until the output
211 212 213 214 215 216 217 218. 2196 22( 221 222 221 224 225 statistic no longer increases with additional features being

added. The final chosen feature set is then passed on to the
FIG. 2. The 15 X 15 grid of SRHO are shown as placed in each ROT. Each of next layer.
the SRHO covers an area of 8 pixels by 8 pixels. The overall ROI is 128 3. Layer 3: Combination and classification
pixels by 128 pixels, where the center 120X 120 of them are covered by the
different observers. The reduced feature data set was then used as the input to

an additional LD. A "round robin" or "leave one out" sam-
pling scheme was utilized in order to use all cases for train-

for a small subregion). Since it has fewer pixels in the sub- ing and testing while still maintaining independence between
region, the SRHO requires significantly fewer samples to the training and testing sets. The outputs from this final LD
properly estimate the necessary covariance matrix. To cover are then used to determine the systems final performance.
the entire ROI we wish to examine, we tile a matrix of sub- Again, ROC AUC was used as the output statistic.
regions over the full region (Fig. 2). This results in many
SRHOs being used to reduce the complexity of the image B. Image database
data down to the number of SRHOs used. The output result
of each SRHO is a scalar. N SRHOs tiled over an entire ROI A ROI database was generated for this study from cases
will generate N outputs or "features." These features are from the University of South Florida's (USF's) Digital Data-
then passed on to the second layer for further processing. base for Screening Mammography (DDSM).24 All of the

cases for this study were taken from images that were digi-

2. Layer 2: Forward searching linear discriminant tized with a Lumisys scanner at 50 microns. Only images
analysis 2which were normal or contained a mass (either benign oranalysis malignant) were used. The DDSM database also contains

The result of layer 1 of the classifier is N image features, truth files, which give location and outlines for each mass
where each feature is the result of the application of a SRHO (benign or malignant), and subtlety ratings. Using the truth
to one particular subregion of the full ROL. To further reduce files, a database of 1024X 1024 pixel ROIs was extracted
and simplify the algorithm, only certain areas (subregions) or where each ROI contained a mass abnormality at its center. A
"features" should be selected to be included in the final de- number of "normal" tissue RObs were extracted, as well.
cision. Regions where misinformation or no useful informa- The RObs were extracted at full resolution and then sub-
tion is gained can be discarded. To determine which subre- sampled down to 128X 128 pixels (400 micron).
gions to incorporate, we used a forward searching Fischer's A total of 1320 ROIs were selected. The final breakdown
LD, which utilized receiver operating characteristic (ROC) of the cases was 656 normal RObs, 307 benign RObs, and
area'under the curve (AUC) as the performance criteria. Fis- 357 cancer ROIs. Since we are interested in a detection task,
cher's LDs are used to optimally divide a two class system cancer and benign cases were considered positive and normal
into its constituent classes by maximizing the distance be- cases were considered negative, when calculating perfor-
tween the sample class means relative to the sample vari- mance. Overall, this gives a database of 664 positives and
ances of the feature set.23  656 negatives for use in this study. Figure 3 shows images of

A forward searching linear discriminant (FSLD) starts the numerical average (sum of all cases over number of
with an empty final set and begins to work by examining the cases) positive signal (mass present, benign or malignant)
output statistic (AUC) for each of the N image features. The and numerical average negative signal (normal tissue only).
feature that gives the highest output statistic is removed and While the positive average image shows strong radial sym-
put into the final set. The forward search continues by taking metry and a nicely centered signal, the negative average im-
each of the remaining features one at a time and constructing age is more diffuse and larger. The central portion of the
a LD with the current "final set." Once again, the feature negative image is radially symmetric as well, but there ap-
that gives the highest output statistic in conjunction with the pears to be a small signal from outside the breast in the upper
previously selected "final set" is included into the new, and lower left-hand comers.
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W ic, !modeled as the average of the positives and negatives (minus
the testing case). The overall covariance matrix was formed

200 by combining the positive and negative covariance matrices

150. each weighted by the percentage of total samples which cor-
responded to that matrix (i.e., number of positive samples/

00! total number of samples for the positive matrix). All of the
100 itest values were then collected as features. The result of this

U -- first step was a data reduction from a 128 X 128 pixels region
50 J to 225 values or features per ROI. Each SRHO covered ap-

0 •:•proximately a 3 X 3 mm area.

1 2 3 4 For layer 2, these 225 features were used as the inputs to
SUBTLE TY a FSLD. The FSLD was used to select the features that were

FIG. 4. Histogram of the subtlety rating of the benign and cancerous masses important and subsequently should be used in the final layer.
used in the database. The forward searching procedure continued until the value of

the area under the ROC curve started to decline, at which
point the optimal subset of features was chosen. A signifi-

C. Procedure cance level of 0.05 was used to terminate the selection pro-

For the study presented here, 225 separate SRHOs were cess.
arranged in a 15X 15 grid across the 128X 128 pixel ROIs. For layer 3, a LD was applied to only the reduced set of
Each of the SRHOs was designed to "observe" an 8 X 8 features (derived from layer 2) and additional metrics were
pixel subregion. Therefore, the 8 X 8 pixel SRHOs covered calculated using a leave-one-out training and testing method-
the center 120X 120 pixel region of the ROI (see Fig. 2). A ology. Calculations of ROC area and partial area, as well as
leave-one-out training and testing methodology was used to statistical comparisons of those metrics, were performed us-
generate 225 (15 X 15) features, where each feature is the ing the ROCKIT program (Charles Metz, University of Chi-
output of an individual SRHO. Signal and background were cago).
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FIG. 5. Histogram of the AUC values for each of the
outputs from (A) the 225 SRHOs and (B) the reduced
set of 37 SRHOs.
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0A4

0.2

0 0.2 0.4 0,6 0,8
FIG. 6. SRHOs selected by the forward searching LD showing the order in FPF
which they were selected. The black areas represent regions that were not
selected. The included color bar demonstrates the order in which the SRHOs FIG. 7. ROC output curves for the fitted and empirical results of the final
were selected: white first, followed by shades of gray, all the way to black, classification stage. The Az for the SRHO/LD system is 0.94, with a partial

AUC of 0.673.

RESULTS Additionally, only a very weak component of directionality

To demonstrate the varying degree of difficulty of the is seen.

cases that were used in the database created for this study, a input to an additional LD in layer 3. Figure 7 shows the ROG

histogram of the subtlety rating of the benign and cancerous ouput cv fo the fit anericlresults thi fia
masses was generated and is shown in Fig. 4. The subtlety output curves for the fitted and empirical results of this final
massegs wagenertatedan d ism shown in Fg4.he subtfi le ty asso classification stage. The AUC for the final output and the full
ratings were taken from the data in the DDSM files associ- SROLsytmws09+/0.6,hihcrepnso

ated with the images and are based on the assessment of the SRHO/LD system was 0.94 + / - 0.006, which corresponds to

mammographers who read the case for the database. The a partial AUC (the normalized area above 90% sensitivity on

histogram shows that most of the cases (both benign and the ROC curve) of 0.673+/-0.028. Additionally, at 90%

malignant) were of high subtlety, thus validating the com- sensitivity, the overall classifier had a specificity of 86% and

plexity of the dataset. a positive predictive value (PPV) of 86.3%. At 95% sensitiv-

Figure 5(A) shows a histogram of the AUC values for ity, the system had a specificity of 69% and a PPV of 75.8%.

each of the outputs from the 225 SRHOs used in the first
layer. The range of individual AUCs for the 225 outputs was
from 0.56 to 0.79, with a mean value of 0.62. All of the The purpose of this study was to investigate the use of
individual SRHOs performed above chance (0.50). In layer subregion Hotelling observers in conjunction with linear dis-
2, the FSLD was used to reduce the number of features. The criminants for the automated classification of regions con-
FSLD was implemented and proceeded until the AUC objec- taining or not containing a mammographic mass. The exact
tive was maximized using a reduced set of 37 selected fea- classification task was to detect the presence or absence of a
tures (SRHOs). Figure 5(B) shows a histogram of the -indi- mass. Both benign and malignant masses were deemed as
vidual AUC values for each of the selected SRHOs. The mass present. It was not the goal of this study to diagnose
range of individual AUCs for the 37 selected features was masses as being either benign or malignant, although similar
from 0.57 to 0.79, with a mean value of 0.65. The reduced techniques could be investigated to do so.
set of features was very representative of the full set. The For the study presented here, a database of 1320 ROIs
maximum value did not change at all, the minimum value was generated from the image cases in the DDSM database.
only changed by 0.01, and the mean value only increased by 664 of these cases were positive (benign or malignant mass),
0.04. while 656 were negative (normal tissue). A histogram of the

Figure 6 shows a graphical representation of the location subtlety ratings from the derived database shows that most of
and the order in which the SRHOs were selected by the the positive cases were of high subtlety, thus showing the
FSLD. The black areas represent regions that were not se- database was a difficult one. A figure of the average positive
lected at all. The SRHO shown in white was selected first. As and average negative signals shows a difference in the two
the color bar on the side shows, the order of selection pro- signals profiles.
ceeds from white to shades of gray to black. The figure A three-layer classifier was developed and tested on the
shows a strong preference for selection of regions that were above database. The first layer is based on subregion Hotell-
more centrally located over those that were further away. ing observers, the second layer performs data selection and
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reduction, and the third layer does the final combination and allow this approach to be incorporated into a larger computer
classification of the remaining features. Figure 5 presented aided detection system to aid mammographers with mass
the outputs from the first layer of the system. The AUCs detection in the clinic.
from the 225 SRHOs are seen to range from 0.56 to 0.79.
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ABSTRACT

We propose to investigate the use of a Laguerre-Gauss Channelized Hotelling Observer (LG-CHO) for the basis of a
computer aided detection scheme for masses in mammography.

A database of 1320 regions of interest was selected from the DDSM database collected by the University of South
Florida. The breakdown of the cases was: 656 normals, 307 benigns, and 357 cancers. For the detection task, cancer
and benign cases were considered positive and normal was considered negative. A 25 channel LG-CHO was designed to
best classify regions as containing a mass or not. Application of this LG-CHO to the database gave a ROC area under
the curve of 0.936 and a partial area of 0.648. Additionally, at 98% sensitivity the classifier had a specificity of 44.8%
and a positive predictive value of 64.2%

Preliminary results suggest that using a LG-CHO can provide a strong backbone for a CAD scheme to help radiologists
with detection. These initial results should be able to be incorporated into a larger CAD system for higher performance
either as a false positive reduction scheme or as an initial filter used for mass detection.

Keywords: Hotelling observer, computer aided detection, channelized Hotelling observer, mammography, masses.

1. INTRODUCTION
Cancer is a one of the most devastating and deadly disease of our time and is the second leading cause of death in the
United States (US).' In 1999 alone, over 1.2 million persons in the US were diagnosed with cancer and it was estimated
that approximately 563,100 persons would perish.' Breast cancer is the most common cause of death in women. A
strong commitment to reducing deaths by cancer has been put forth by the Department of Health and Human Services.
The prime method for detecting breast cancer is through screening mammography.' Early detection of suspicious
regions in mammograms is vital to patient outcome and is key to improving patients long term care.

The development and application of image processing techniques for the automated detection of masses will greatly
improve early detection. Preliminary results on commercial systems currently available have shown an increase in
detection of cancer.3'4 Once again, this improved early detection is vital to positive patient outcomes.

The long range goal of our group is to build tools which can be incorporated into a full fledged computer aided detection
(CAD) system for improving mass detection in mammograms. This CAD system will help radiologists detect breast
masses and will increase the chance of early detection of subtle masses. We firmly believe that development and
application of CAD techniques for the automated detection of cancerous breast masses will have a great impact on early
detection and hence on overall patient outcome.

Most CAD systems can be viewed as a two stage approach. The first stage uses some type of initial linear processing,
with high sensitivity and low specificity, to detect a set of potential masses. The second stage consists of classifying
these potential masses using predictive modeling techniques to reject a large number of false positives. Using this type
of approach, systems have been developed commercially and investigated experimentally from several institutions.
These systems have shown great success and hold even more promise in the future. However, some issues still exist
with the use of CAD systems in clinical practice. The chief complaint of radiologists and mammographers on CAD
systems, such as these, is the number of false positives that the system retains. If too many false positives are reported,
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the radiologist not only loses faith in the system, but also loses valuable time. Therefore any efforts into developing new
techniques which can be used to reduce the number of false positives should be well received.

Since the system we are trying to model is the radiologist, we have chosen to investigate the incorporation of Hotelling
observers into our CAD system. In past research, Hotelling observers have been shown to effectively track human
observer performance.5 '- Specifically, we wish to investigate incorporating Laguerre-Gauss channelized Hotelling
observers into the second stage of the CAD system to help improve in false positive reduction. We have pursued this
approach previously in chest radiography"t with great success and wish to extend this experimentation into
mammography. Our hypothesis is that incorporating models from vision science into the classification process will help
to reduce the number of false positives while not reducing sensitivity.

2. MATERIALS AND METHODS
This section will overview the creation of our region of interest database, background information on Hotelling
observers, a description of the channelized Hotelling observer, a description of Laguerre-Gauss channelized Hotelling
observers, and finally, the general procedure used in this study.

2.1 Region of Interest Database
To begin our study, we needed to come up with a database of regions of interest (ROIs). This database would be used to
train and test our developed observer. Only ROIs and not full size images are needed, as we are envisioning the use of
our system to help reduce the number of suspicious regions that remain after initial detection by a CAD system. Because
we are focusing of false positive reduction, only a database of potential positive regions which have already been
detected is needed.

To create our database, we looked towards the Digital Database for Screening Mammography (DDSM)12 database
collected by the University of South Florida. To further limit the size of the database, we chose to use only images
digitized by the Lumisys scanner (digitized at 50 micron). A search was performed on the DDSM database (Lumisys
cases) to determine which cases had masses where we could extract a 1k by lk pixel ROI without going outside the
image. It was this subset of cases which we used in this study. The 1k by 1k pixel ROIs were extracted from the viable
cases with the mass lesion being centered in the ROI. All of the ROIs were then spatially averaged down to a size of 128
by 128 pixels. This set constituted the set of positive masses. To create a set of normal cases, a similar procedure was
followed, except normal DDSM images were used, i.e. images with no abnormality present.

Using the above criteria, a ROI database of 1320 regions was selected. The breakdown of the cases was as follows: 656
normal ROIs, 307 benign ROIs, and 357 cancer ROIs.

Since we are investigating a detection task, cancer and benign cases both constitute being masses and were considered
positive. Cases without any abnormalities are normal and were considered negative.

2.2 Hotelling Observers
We wish to continue examining incorporating models from the human vision system into the classification stage of CAD
systems. The Hotelling observer (HO) is a mathematical observer which should effectively discriminate between a two
class system. The HO incorporates information about the signal, the background, and noise correlation for prediction of
positive and negative classes. In white noise, the HO reduces to a matched filter. However, in medical images, which
have correlated noise, the observer estimates a template to decorrelate the noise. 13 Additionally, HOs have been shown
to be effective in tracking the performance of human observers for detection5' 0 and as a means for measuring image
quality.14-

18

Mathematically, the HO is a set of weights that can be applied to an image to give an output test statistic and this statistic
should separate the classes optimally. The weights or template for the HO are defined as:
W=[ <S+B> - <B>]/K (1)
Where S is the signal, B is the background, S+B is the signal in the background, < represents the mean, and K is the
covariance matrix. This covariance matrix should be the weighted mean of the signal and background covariance
matrices. To get the output test statistic, L, we multiply these weights by the image data, I, and sum over all the pixels.
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L=1 W*I (2)

The test statistic should be larger when the signal is present and smaller when absent. Optimally, this output test statistic
will divide the signal present and signal absent cases perfectly, but this rarely happens. To quantify the effectiveness of
the observer in properly classifying the cases as signal present or absent, receiver operating characteristic (ROC) analysis
is performed. The most common metric examined from ROC analysis is the area under the curve (AUC).

The HO has been shown to be the optimal detector when certain features of the data (signal, background, noise
covariance) are known and are approximately Gaussian."5

Problematically, however, for real medical images, we do not know the exact signal or background. We therefore have
to use estimates of the signal, the general background, and the covariance matrix to calculate the set of linear weights
used in the HO. This makes the derived observer a sub-optimal observer. In practice, one uses the average positive
signal, the average background signal, and the weighted covariance matrix. Direct application of the HO to a large
region of interest (ROI) is prohibitive, as too many image samples are needed to estimate the covariance matrix.1 8 For
example, if a ROI of size 128 by 128 pixels, the covariance matrix would be of size 16k by 16k elements and would
require approximately 5 to 10 fold that number to accurately assess the covariance matrix. This amount of "real,, data is
intractable so alternative solutions are necessary.

2.3 Channelized Hotelling Observers
To reduce the number of data samples that are necessary, people have attempted to reduce the dimensionality of the HO.
This has been done by applying channelized models to the Hotelling observer to create a channelized Hotelling obsever
(CHO).' 9 Theoretically, a channel model is used by applying channels to the input data to reduce the dimensionality of
the data. Generally speaking, a system of radially symmetric channels is chosen for simplification. Each of the channels
would be applied to the data to give a single output, usually by frequency averaging certain expected important
frequency bands. These different outputs from each of the channels is then used as the input of a HO, as described
above.

This type of CHO reduces the dimensionality of the covariance matrix to the number of channels by the number of
channels. For instance, in the case above, for ROIs of size 128 by 128, the covariance matrix is size 16k by 16k. If a 10
channel model is used, the covariance matrix is reduced to 10 by 10. This massive reduction in dimensionality of the
covariance matrix allows for the estimation problem to now be tractable with a reasonable sized data set of images.

2.4 Laguerre-Gauss Channelized Hotelling Observer Features
Now that we know we are going to be using a CHO model, the question arises as to what channel basis functions should
be used. Barrett et al2° suggest that since most HOs are smooth, smooth functions should be more favored over non-
smooth. Additionally since the objects we are aiming to detect are on average, generally round, a radially symmetric
basis should be used. Following Barrett's work, we have also chosen to use a family of functions based on Laguerre-
Gauss (LG) channels. LG channels are formed as the product of Laguerre polynomials and Gaussians. Laguerre
polynomials are defined as:

=- , where .(3)
M=0 m m. Mm (n-rm)!m!(

Multiplying these Laguerre polynomials with Gaussians gives LG channels. Each channel is then multiplied by an
appropriate channel weight (a,) determined by applying a HO to the channels, and the sum of all the channels is taken

to form the final LG-CHO template, w. In polar coordinate notation, the final template looks like:

we(r) = I a xP(,L- )Ln (--2- ) (4).

Here, n is the number of channels. Figure l(a) shows a 3D representation of a sample LG-CHO template, while figure
1(b) shows a profile through the midline to better show details.
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Figure 1: 3D (A) and 2D (B) representation of a 25 channel LG-CHO template. The 2D representation is taken as a
slice through the mid-plane of the 3D version.

2.5 Procedure
For the study presented here, a system of Laguerre-Gauss symmetric channels was used for the basis of the CHO. Each
of the LG channel templates was applied to each of the members of the ROI database to determine a channel response.
Average positive and negative responses and covariance matrices were then calculated. This information was used to
determine the weights for the HO. These weights were then applied to the channels and a single LG CHO template was
formed. The response of each ROI to the template was then determined and an output test statistic was calculated.
These test statistics were sampled via bootstrap techniques to determine the ROC area under the curve performance
metric along with its variance. A variety of channel numbers were empirically tested to maximize the ROC area under
the curve.

3. RESULTS
An empirical search methodology was used to determine the optimal number of channels for the ROI database which we
used for this study. The maximal ROC area under the curve was determined to occur with 25 channels. Using this
number of channels, a LG-CHO template was determined and applied to each of the regions in the ROI database. The
responses were collected and analyzed via bootstrap and ROC techniques to determine system performance. The LG-
CHO system gave a ROC area under the curve of 0.936 and a partial. area under the curve (the normalized area above
90% sensitivity on the ROC curve) of 0.648. Additionally, at 98% sensitivity the overall classifier had a specificity of
45% and a positive predictive value of 64.2%.

Table 1 shows specificities and positive predictive values (PPV) for 90%, 95%, and 98% sensitivity.

Figure 2 shows the ROC output curve for the LG-CHO system.

Sensitivity Specificity PPV
90% 82% 83%
95% 73% 78%
98% 45% 64%

Table 1: Specificities and positive predictive values for the LG-CHO at different sensitivities.
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Figure 2: ROC output curve for the overall LG-CHO.

4. DISCUSSION
The goal of this study was to investigate the use of a Laguerre-Gauss channelized Hotelling observer for the automated
classification of regions as either containing or not containing a mammographic mass. Our goal was not to determine
benign from malignant masses (diagnosis), although similar techniques could be used to perform that study. For the
study presented here, a large ROI database was generated from the image cases in the DDSM database. 664 of these
cases were positive for having a mass present, while 656 were taken from normal images, so no mass was present.

The LG-CHO system performed quite well for mass detection on our database. The ROC AUC for the classification
task was 0.936, which corresponds to a partial AUC of 0.648 +/- 0.028. We calculated the specificity of the system at
95% sensitivity to be 73%. At this threshold setting, 33 positive cases would be missed, while 479 of the 656 negative
regions would be correctly identified as negative. Additionally, at 98% sensitivity (13 missed positives), 295 of the 656
negative regions would be correctly identified. This type of highly sensitive classifier could very easily be added to
available CAD system to improve upon their current performance.

5. CONCLUSIONS
Preliminary results suggest that using a Laguerre-Gauss channelized Hotelling observer can provide a strong backbone
for a CAD scheme to help radiologists with detection. These initial results should be able to be incorporated into a
larger CAD system for higher performance either as a false positive reduction scheme or as an initial filter used for mass
detection.
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ABSTRACT

We propose to investigate a novel use of the Hotelling observer for the task of discrimination of solitary pulmonary nodules
from a database of regions that were all deemed suspicious . A database of 239 regions of interest (ROls) was collected
from digitized chest radiographs. Each of these 256x256 pixel ROIs contained a suspicious lesion in the center for which we
have a truth file. For our study, 25 separate Hotelling observers were set up in a 5x5 grid across the center of the ROIs.
Each separate observer was designed to observe a 15x15 pixel area of the image. Leave-one-out training was used to
generate 25 output observer features. These 25 features were then narrowed down using a sequential forward searching
linear discriminant analysis. The forward search was continued until the accuracy declined at 13 features and the subset was
used as the input layer to an artificial neural network (ANN). This network was trained to minimize mean squared error and
the output was the area under the ROC curve. The trained ANN gave an ROC area of .86. In comparison, three radiologists
performed at ROC area indexes of .72, .79, and .83.

Keywords: CAD, Lung Nodules, Hotelling Observer, Image Processing

1. INTRODUCTION

Goal: We propose to investigate a novel use of the Hotelling observer for the basis of a computer aided diagnosis (CAD)
scheme for the task of discrimination of solitary pulmonary nodules from a database of regions that were all deemed
suspicious.

Cancer is one of the most devastating diseases of our time. In 1999, over 1.2 million people in the US were diagnosed
with cancer. 1 Lung cancer accounts for about 28 percent of all cancer deaths and estimates show that over 158,000 persons
will die from this disease. 1 The prime method for detection of cancer is radiological exams2, of which, the simplest is the
chest x-ray. It has been shown that a radiologist may miss up to 30% of pulmonary nodules in a x-ray image. Since early
detection of lung cancer so significantly improves patient outcome, detection of these nodules is very important. The
development and use of computer aided detection systems in conjunction with radiologists has been shown to improve

detection performance.3,4

The goal of the initial study presented here is to begin development of an innovative detection tool for aiding the
radiologist in determining if a suspicious region is a pulmonary nodule. This preliminary proposal focuses on investigating
the diagnostic accuracy of a combination linear and non-linear classifier to perform the discrimination of pulmonary nodules
from suspicious regions.

2. BACKGROUND

Most human sensory processes are understood to work by a linear step followed by a non-linear step for decision tasks. In
the case of the visual processing system, the linear step is the receptive fields which process basic visual stimuli and are used
to reduce data complexity. This linear step is followed by a non-linear combination of the important data to determine
decisions. This multi-layered process is what we have chosen to model and investigate in this study. The process, as we see
it, reduces to a 3 layer classification scheme. The first layer models the linear portion of the visual system. We have chosen
to use the Hotelling trace observer for this layer. The second layer models the data reduction in the visual process and will be
performed using linear discriminant analysis (LDA). The third layer, the non-linear combination of the reduced complexity
data, will be performed using an artificial neural network (ANN) for the final classification.
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First, we would like to present some background material on HOs and ANNs before we get into the specifics of this
proposal.

2.1. Small region of interest Hotelling observers

The Hotelling trace observer, sometimes just known as the Hotelling observer (HO), is the optimal linear detector for a
known signal, known background, and known covariance matrix when statistics are approximately Gaussian. This optimal
detector has been shown to be effective in tracking the performance of human observers for detection. 5- 10 Many researchers

have also used the HO as a means of measuring image quality or as an imaging metric. 1 1-14 The HO uses information about
the signal to be detected, the background, and the image covariance matrix to calculate a set of linear weights. The
covariance matrix is a matrix of elements where each element is the covariance between 2 pixels and the diagonal is the
variance for each pixel. For real medical images, we do not know these features, so we have to use estimates of the signal to
be detected, the general background, and the image covariance matrix to calculate the set of linear weights for the then sub-
optimal observer. The weights or template for the HO are defined as

W=[ <S+B> - <B>]/K, (1)

where <> represents the mean, S is the signal, B is the background, S+B is the signal in the background, and K is the
covariance matrix. Multiplying these weights by the image data, 1, and summing over all the pixels, p, gives the test statistic,

L=1 Wp*1p (2)

This test statistic can be used as a decision variable. It will be higher in value when the signal is present and lower when
it is absent. In white noise, the HO is a matched filter; however, in correlated noise, such as in medical images, this observer

estimates a template that decorrelates the noise. 15

Application of the HO to a large region of interest (ROI) is prohibitive, as too many image samples would be needed to
properly estimate the covariance matrix. For instance, in the database we have developed, the 256 by 256 pixel ROls would
require a covariance matrix of size 65,536 (256x256) by 65,536 (256x256) elements. Collecting a database of real images
large enough to obtain a stable estimate of a covariance matrix of this size would prove to be overly difficult.

To combat this size difficulty, many researchers have investigated using a channelized HO model, where radially
symmetric vision channels are used to reduce the dimensionality of the problem. Initially we tried this approach, only to find
that it did not work well for lung nodule detection. We felt that this failure was due to neither the normal anatomy nor the
nodule signal in the lungs to be radially symmetric. Deciding to relax this radial symmetry constraint caused us to re-think
the pixel-wise HO.

We then decided to use many small region of interest Hotelling observers (SRHO), because a small region observer
would require significantly less samples to properly estimate the necessary covariance matrix. Our proposal was to tile a
small matrix of small observers over the full region of interest we wished to examine. This will result in many SRHO being
used to reduce the complexity of the image data; however, each small observer will be observing a portion of the full
resolution image. We chose not to sub-sample the image data as we felt that the HO would be able to model and incorporate
the image texture into the covariance matrix. By doing this, we hoped to maintain the sensitivity to the high frequency
content of the image. These small observers will be sensitive to changes in high frequency noise power spectra and
structured noise, including anatomy. The result of applying these many SRHO would be a matrix of outputs or features, one
list of features for each SRHO used.

These output features, the output of the small individual Hotelling classifiers, will then be examined by analysis (LDA,
neural network) to further reduce the dimensionality of the problem. The final reduced set of features/classifiers will then be
combined using a non-linear ANN to determine the final decision as to if a region should be classified as a pulmonary nodule
or not. In essence, the adoption of a multi-layered approach allows not having to lose the high frequency content, which we
feel plays an important role in nodule classification.

2.2. Artificial neural networks

The methods of developing the artificial neural network models which we will use have been described in the previous
studies from our lab and will only be summarized here. The multi-layer ANNs use a three layer (one hidden layer), feed-
forward, error-backpropagation ANNs. When a perceptron is used, no hidden layer is incorporated into the network. Each
ANN is presented with the input findings for each case and the corresponding known truth outcome. The ANN merges all
the findings nonlinearly to generate a single output value between zero and one corresponding to its prediction of the
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likelihood of a nodule being present for that case. The ANN is trained and learns iteratively under this supervised training
process in order to improve its performance.

A "round robin" or "leave-one-out" sampling scheme is utilized in order to use all cases for training and testing while still
maintaining independence between the training and testing sets. Network training can be halted when the ROC area index,
Az, is maximized over the testing cases. Our custom ANN software was written in the C language and runs on Sun Ultra 60
workstations (Sun Microsystems Inc., Mountain View, Ca.). Initial training requires up to several minutes for each new
combination of parameters, but a finalized ANN can evaluate each new case within a fraction of a second.

As stated previously, for each case the model produces as its prediction a number between zero and one. To use the ANN
as a diagnostic aide, one could select a certain threshold value, such that those cases with output values below the threshold
would be considered probably not being a nodule. The remainder of cases with values exceeding the threshold would be
considered a pulmonary nodule. The sensitivity is the number of correctly classified nodules divided by the number of all
actual nodules; the specificity is the number of correctly diagnosed negative lesions out of all actual negative lesions.
Varying this threshold value results in a trade off between sensitivity and specificity and will generate an ROC curve for
analysis.

3. METHODS

Here is a summary of the methods for this study:

3.1. Image database

We have previously 16 collected a database of 239 ROls for nodule classification and detection studies. Each ROI is 256
pixels by 256 pixels. For the purposes of this database, a nodule was defined as any lesion that represented a tumor or
granuloma (calcified or noncalcified). All of the original images were taken between 1991 and 1996. A truth file was
prepared by two board certified radiologists for the digitized 2048 pixel by 2048 pixel images based on the PA radiograph,
CT results when applicable, the full radiology report, and the pathology report when applicable. Overall, the database
consists of 94 negative pulmonary nodule ROIs and 145 positive ROIs. Please note that for this database, all of the negative
regions were deemed suspicious for a nodule upon initial examination by the radiologist, which makes this a very difficult
database.

In addition to having this database, 3 radiologists have performed a ROC study over all of the images by selecting a
probability of the region being a nodule for 237 of the regions in this database (2 regions were used for training). Analysis of
the radiologists ROC ratings yielded areas which ranged from .72 to .83. This level of radiologist performance for area under
the ROC curve corresponds well to other studies of lung nodule databases for sets of cases which were deemed to be at a
level of complexity of very subtle (.753) to subtle (.876).17

3.2. SRHO

For our study, 25 separate Hotelling observers were set up in a 5x5 grid across the center of the full size ROls. The Hotelling
observers were set up in a matrix and numbered as shown in Figure 1. Each separate observer was designed to observe or
discriminate a 15 x 15 pixel area of the image, thus the 25 sub regions cover the 75 x 75 pixel center of the ROI. A leave-
one-out training and testing methodology was used to generate 25 features, where each feature is the output of the individual
observers. Signal and background were modeled as the average of the positives and negatives, respectively, and the
covariance matrix was calculated over the images to be trained on.

1 2 3 4 5

6 7 8 9 10
11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 1. Feature numbering matrix for the 5x5 grid of SRHO covering the center 75x75 pixels of each ROI.
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3.3 LDA and ANN

These 25 features derived from separate Hotelling observers were then narrowed down by using a sequential forward
searching linear discriminant analysis (LDA) where percent correct (total number of correct identifications over total
number) was used as the performance metric. The forward search was continued until the accuracy started to decline and
then the chosen subset was used as the input layer to a three layer artificial neural network (ANN). This network was trained
to minimize mean squared error and the output was the area under the curve given by receiver operating characteristic (ROC)
analysis. Once again, a leave-one-out methodology was incorporated into the training and testing of the ANN. We should
note that our ANNs were not trained with optimal training weights nor optimal training iterations, so our result presented here
could improve.

4. RESULTS

The 25 Hotelling observer features, as laid out in Fig. 1, were searched by the LDA. The output of the LDA is shown in table
1, where each region, in order of importance cumulatively is shown. For each region, the independent accuracy is shown as
well as the cumulative accuracy, based on using that region and the previous regions. A maximal percent correct of 76.6%
was reached using 13 of the 25 features. This subset of 13 features was then used as the input layer into the ANN, which
when trained gave out a ROC area of.86.

Order Selected Region Independent Cumulative

1 5 0.6402 0.6402
2 10 0.5774 0.682
3 13 0.6192 0.6946
4 17 0.5481 0.7029

5 8 0.5732 0.6987
6 9 0.5941 0.7029
7 22 0.6318 0.7113

8 19 0.6318 0.7197
9 6 0.6234 0.7322
10 12 0.6109 0.749
11 15 0.5732 0.749
12 7 0.5983 0.7531
13 20 0.6025 0.7657
14 24 0.6234 0.7615
15 1 0.523 0.7573
16 23 0.6276 0.7448
17 3 0.5774 0.7531
18 2 0.59 0.7364
19 4 0.5732 0.728
20 16 0.5774 0.728
21 25 0.4895 0.7197
22 11 0.6234 0.7155
23 18 0.5565 0.7071
24 14 0.5607 0.6904
25 21 0.6192 0.6946

Table 1. Table showing independent and cumulative accuracy (percent correct) for each of the 25 features as the LDA
searched through the set. A maximum is reached at 76.6% at 13 features selected.
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5. DISCUSSION
This work represents an initial study into using small regions of an image as the input to Hotelling observers to obtain image
features. These features were then reduced using LDA. The reduced set was then fed into an ANN to perform the task of
CAD for the ROI database we have collected. 25 features (15x15 sub regions) were calculated using the SRHO technique.
LDA was used to determine when accuracy started to decline by adding more features. A subset of 13 features gave the
highest percent correct. These 13 features were then used as the input layer to an ANN. The trained ANN gave an ROC area
index of .86. For comparison, the three radiologists who had performed this same ROC study on these ROIs had areas of .72,
.79, and .83.

Preliminary results suggest that using sub region Hotelling observers in combination with ANNs can provide a strong
backbone for a CAD scheme to help radiologists with diagnostic decisions. Our initial results already compare well to
radiologists performance for the classification of suspicious regions for pulmonary nodules.

6. CONCLUSIONS

The immediate benefit of this proposal is to develop the ground work for a highly accurate computer-aided diagnosis system
for pulmonary nodule classification which would be using a very different approach then what has been used historically in
the field. This ground work should yield enough preliminary results and validation to support continuing this project on a
larger scale and building such a system to assist the radiologist.
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ABSTRACT

Previously, we have developed and tested a Laguerre-Gauss channelized Hotelling observer

(LG-CHO) for mass detection. This previous work optimized and used the LG-CHO on a

database of regions of interest (ROIs) that had been selected from a mammographic image

database derived from the DDSM. Positive images contained masses (malignant and benign)

and negative cases contained normal tissue. Additionally, we have also re-optimize the LG-

CHO on the data from the initial detection stage of a CAD system we are developing, thus

incorporating computer selected false positives into the training set. For the study presented

here, we will incorporate the optimized observer results as an additional feature to be used in a

false positive reduction stage in a CAD system we are developing. The resultant performance of

this re-optimized system will be compared with the previous performance. Results are expected

to show increased ability of the system to properly classify CAD suspicious regions as positive

or negative.

Keywords: Hotelling observer, computer aided detection, channelized Hotelling observer,

mammography, masses.



1. Introduction

Early detection of suspicious regions in mammograms is vital to patient. The development and

use of Computer Aided Detection (CAD) systems has shown an increase in detection of cancer

(Castellino, Roehrig et al. 2000; Freer and Ulissey 2001). The long range goal of our group is to

build tools which can be incorporated into CAD systems for improving the detection of

suspicious masses in mammograms.

Our CAD system (Catarious, Baydush et al. 2004), as developed so far, consists of a six stage

approach. The first stage is initial filtration with a difference of Gaussian (DOG) filter. This

filter has been empirically determined and is applied using normalized cross correlation. The

second stage is suspicious region localization, where a thresholding technique has been applied

and regions are not allowed to grow into one another. The third stage is suspicious region

segmentation, which uses an iterative, linear classifier to determine inside and outside pixels.

The fourth stage is feature extraction, followed by feature selection. The last stage is

classification and false positive reduction. Here, we discuss the development and incorporation

of a Laguerre-Gauss channelized Hotelling observer (LG-CHO) as an additional feature to be

used in stages four through six of our developing CAD system in hopes that it can be used to

help further reduce false positives and improve the performance of the overall system.

2. Materials and Methods

2.1 Hotelling Observers

The Hotelling observer (HO) is a mathematical construct, which should discriminate a two class

system. The HO incorporates information about the signal, the background, and noise



correlation for prediction of class. In correlated noise, the observer estimates a template to

decorrelate the noise (Eckstein, Abbey et al. 1998) which improves its effectiveness. HOs have

been shown to track the performance of human observers for detection tasks (Fiete, Barrett et al.

1986; Fiete, Barrett et al. 1987; Gifford, King et al. 1998; Gifford, Wells et al. 1999;

Wollenweber, Tsui et al. 1999; Gifford, King et al. 2000).

Mathematically, the HO is a set of weights that can be applied to an image to give an output test

statistic. This test statistic should separate the classes optimally. The weights for the HO are:

W=[ <S+B> - <B>]/K (1)

Where S is the signal, B is the background, S+B is the signal in the background, <> represents

the mean, and K is the covariance matrix. To get the output test statistic (L) we take the dot

product of the weights and the image data (I). The test statistic should divide the signal present

and signal absent cases perfectly, but this rarely happens in realistic cases. The HO has been

shown to be the optimal detector when certain features of the data (signal, background, noise

covariance) are known and are approximately Gaussian (Barrett, Yao et al. 1993).

Problematically, we do not know the exact signal or background for medical images. We

therefore use estimates and these estimates reduce the performance of the HO. Additionally,

direct application of the HO to a large region of interest (ROI) is prohibitive, as too many image

samples are needed to estimate the covariance matrix (Barrett, Abbey et al. 1998).

2.2 Channelized Hotelling Observers

Channelized Hotelling observers (CHO) (Myers and Barrett 1987) are created by applying some

type of channels to the input data to reduce the dimensionality. Generally speaking, a system of



radially symmetric channels is chosen for simplification. Each of the channels is applied to the

data to give a single output. These different channel outputs are then used as the input of a HO,

as described above. This type of CHO reduces the dimensionality of the covariance matrix to the

number of channels by the number of channels. This massive reduction in dimensionality of the

covariance matrix allows for the estimation problem to now be tractable with a reasonable sized

data set of images.

2.3 Laguerre-Gauss Channelized Hotelling Observer

For the study presented here, we have followed Barrett's work and have chosen to use a family

of functions based on Laguerre-Gauss (LG) channels. LG channels are formed as the product of

Laguerre polynomials and Gaussians. Laguerre polynomials are defined as:

" n "nxmm --•. n) (n!-n2
LW(x) = _ where ( = F m)m"(2)

Multiplying these Laguerre polynomials with Gaussians gives LG channels. Each channel is

then multiplied by an appropriate channel weight (aj) determined by applying a HO to the

channels, and the sum of all the channels is taken to form the final LG-CHO template. In polar

coordinate notation, the final template, w, looks like:

w(r)= a,, ex( T2)L a 2 (3).

Here, n is the number of channels. Figure 1 shows a 3D representation of a sample LG-CHO

template.



Figure 1: 3D plot representation of a sample 25 channel LG-CHO template.

2.4 Image Database

The mammograms that were used for this study were extracted from the University of South

Florida's Digital Database for Screening Mammography (DDSM) (Heath, Bowyer et al. 1998).

183 images from 169 patients were pulled from the DDSM. Specifically, 83 images contained

50 benign and 50 malignant masses and 100 "normal" images contained no abnormalities. The

images were chosen from the set scanned with a Lumisys scanner at a resolution of 50 microns

per pixel at a bit depth of 12, but were resampled to 200 micron per pixel. Even though the

images in the study database were randomly selected, the distribution of mass descriptors

closely matched that of the entire collection of masses.

Since we are investigating a detection task, a positive detection is considered if either a cancer

or a benign mass is correctly identified. Cases without any abnormalities are normal and were

considered negative. Results are shown for detection, as presented above, and for classification,

which is only the detection of malignant masses.



2.5 Procedure

In a previous study (Baydush, Catarious et al. 2003), we used a hand selected region of interest

(ROI) database to train and test the LG-CHO. While the receiver operating characteristic (ROC)

results for that study were promising, we realized we needed to train the observer on computer

selected false positives and test the observer in a full CAD system. For the study presented here,

an image database, described above, was used as input to our CAD system and the CAD system

was used to perform stages one through three, as detailed above. At this point, ROls of all the

suspicious regions were extracted based on their centroid location, determined from the

segmentation output. The initial sensitivity of the system was -98% of the malignant masses

with approximately 9.76 false positives per image (FPpI). These ROls were used to train and

test the LG-CHO observers. The response of each ROI to the template was then determined and

an output test statistic was calculated. These test statistics were analyzed and a variety of

channel numbers and channel parameters were empirically tested to maximize the ROC area

under the curve. The LG-CHO with the best overall area under the curve was chosen to be used.

This LG-CHO was then applied to the entire image for each image in the database. Four features

were calculated from the output of the normalized cross correlation within each suspicious

region. The mean, standard deviation, peak value, and the value at the centroid were calculated

for each suspicious region. These four new features were included into the set of features that

were already measured by our system. Stages four through six of the system were then

completed both with and without the incorporation of the four LG-CHO based features. FROC

results were calculated.



3. Results

The LG-CHO which used 40 channels and an a value of 65 was shown to give the highest area

under the curve results of 0.7625 with the training ROIs. This LG-CHO was used to generate

four features which were included in the feature selection stage of the CAD system. Before the

inclusion of these four features, the CAD system had selected the following features: average

Haralick correlation, normalized radial length (NRL) spread, NRL change, and average Haralick

sum average. These features had the following ROC areas: .83, .81, .80, and .76 respectively.

With the inclusion of the LG-CHO features, the system chose the exact same features as

previously; however, the centroid value from the LG-CHO was chosen fourth and the average

Haralick sum average was chosen last. This feature had a ROC area of .74. Figure 2 shows the

FROC results of the CAD system both with and without the LG-CHO being incorporated.

FROC results of CAD system with and without LG-CHO
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Figure 2: FROC results of the CAD system both with and without the LG-CHO being

incorporated. Results for classification (malignant versus not) and detection (benign and

malignant versus normal) are shown.



4. Discussion

The goal of this study was to investigate the incorporation of a LG-CHO into a CAD system.

The CAD system did automatically select one of the LG-CHO features as being important and

the inclusion of this feature did improve both overall performance (detection) and malignant

(classification) performance, especially in high sensitivity regions of the classification FROC

curve. Of interest is that the system chose exactly the same features both with and without the

inclusion of the LG-CHO except the LG-CHO feature was chosen as well. These results show

that observer templates can be used to improve CAD results. In the future, more advanced

channelized observer models should be investigated.

Acknowledgements

We would like to gratefully acknowledge support for this research from the DOD Breast Cancer

Research Program, DAMD17-02-1-0367 and DAMD 17-03-1-0186.

References

Barrett, H. H., C. K. Abbey, et al. (1998). Stabilized estimages of Hotelling-Observer detection

performance in patient-structured noise. SPIE Medical Imaging 1998: Image Perception.

Barrett, H. H., J. Yao, et al. (1993). "Model Observers For Assessment of Image Quality."

Proceedings of the National Academy of Sciences of the United States of America

90(21): 9758-9765.

Baydush, A. H., D. M. Catarious, et al. (2003). Computer aided detection of masses in

mammography using a Laguerre-Gauss channelized Hotelling observer. Medical Imaging

2003: Image Perception.



Castellino, R. A., J. Roehrig, et al. (2000). "Improved Computer-aided Detection (CAD)

Algorithms for Screening Mammography." Radiology 217(P): 400.

Catarious, D. M., A. H. Baydush, et al. (2004). "Incorporation of an iterative, linear

segmentation routine into a mammographic mass CAD system." Medical Physics 31:

1512-1520.

Eckstein, M., C. Abbey, et al. (1998). Human vs model observers in anatomic backgrounds.

Medical Imaging 1998: Image Perception.

Fiete, R. D., H. H. Barrett, et al. (1986). "Psychophysical Study to Test the Ability of Th

Hotelling Trace Criterion to Predict Human-Performance." Journal of the Optical Society

of America a-Optics Image Science and Vision 3(13): P126-P126.

Fiete, R. D., H. H. Barrett, et al. (1987). "Hotelling Trace Criterion and Its Correlation With

Human- Observer Performance." Journal of the Optical Society of America a-Optics

Image Science and Vision 4(5): 945-953.

Freer, T. W. and M. J. Ulissey (2001). "Screening mammography with computer-aided

detection: prospective study of 12,860 patients in a community breast center." Radiology

220: 781-786.

Gifford, H. C., M. A. King, et al. (1998). "Channelized Hotelling and human observer correlation

for lesion detection in hepatic SPECT imaging." Journal of Nuclear Medicine 39(5): 771.

Gifford, H. C., M. A. King, et al. (2000). "Channelized hotelling and human observer correlation

for lesion detection in hepatic SPECT imaging." Journal of Nuclear Medicine 41(3): 514-

521.



Gifford, H. C., R. G. Wells, et al. (1999). "A comparison of human observer LROC and

numerical observer ROC for tumor detection in SPECT images." IEEE Transactions On

Nuclear Science 46(4): 1032-1037.

Heath, M., K. W. Bowyer, et al. (1998). Current status of the Digital Database for Screening

Mammography. Digital Mammography. N. Karssemeijer, M. Thijssen and J. Hendriks,

Kluwer Academic Publishers: 457-460.

Myers, K. J. and H. H. Barrett (1987). "Addition of a Channel Mechanism to the Ideal-Observer

Model." Journal of the Optical Society of America a-Optics Image Science and Vision

S4(12): 2447-2457.

Wollenweber, S. D., B. M. W. Tsui, et al. (1999). "Comparison of hotelling observer models and

human observers in defect detection from myocardial SPECT imaging." IEEE

Transactions On Nuclear Science 46(6): 2098-2103.



A mammographic mass CAD system incorporating features from
shape, fractal, and channelized Hotelling observer measurements:

preliminary results

David M. Catarious, Jr.*a, Alan H. Baydushb'a, Craig K. Abbeyd, Carey E. Floyd, Jr.c"a
aDept. of Biomedical Engineering, Duke University, Durham, NC 27710

bDept of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
cDept. of Radiology, Duke University Medical Center, Durham, NC 27710

aDept. of Biomedical Engineering, University of CA, Davis, Davis, CA 95616

ABSTRACT

In this paper, we present preliminary results from a highly sensitive and specific CAD system for mammographic
masses. For false positive reduction, the system incorporated features derived from shape, fractal, and channelized
Hotelling observer (CHO) measurements. The database for this study consisted of 80 craniocaudal mammograms
randomly extracted from USF's digital database for screening mammography. The database contained 49 mass findings
(24 malignant, 25 benign). To detect initial mass candidates, a difference of Gaussians (DOG) filter was applied through
normalized cross correlation. Suspicious regions were localized in the filtered images via multi-level thresholding.
Features extracted from the regions included shape, fractal dimension, and the output from a Laguerre-Gauss (LG) CHO.
Influential features were identified via feature selection techniques. The regions were classified with a linear classifier
using leave-one-out training/testing. The DOG filter achieved a sensitivity of 88% (23/24 malignant, 20/25 benign).
Using the selected features, the false positives per image dropped from -20 to -5 with no loss in sensitivity. This
preliminary investigation of combining multi-level thresholded DOG-filtered images with shape, fractal, and LG-CHO
features shows great promise as a mass detector. Future work will include the addition of more texture and mass-
boundary descriptive features as well as further exploration of the LG-CHO.

Keywords: computer aided detection, mammography, masses, channelized Hotelling observers, fractal dimension

1. INTRODUCTION

For women in the United States, breast cancer is the second-most deadly type of cancer'. The American Cancer Society
(ACS) estimates that in 2002, breast cancer will be diagnosed in 203,500 women and will kill almost 40,000 women1.
Survival rates are significantly higher when the cancer is detected at an early stage24. The 5-year survival rate for
patients with localized breast cancer is 96%. Patients with distant metastases see their 5-year survival rate drop to 21 %1.
Thus, detecting breast cancer at an early stage is critical to patient care.

The most common and effective early-detection tool currently available to clinicians is screening mammography. In
fact, half of the cancers detected in screening mammography are impalpable 5. Studies have shown that mammography is
the only screening program proven to reduce mortality 5. Mammography is also inexpensive and widely available.

Unfortunately, screening mammography has some drawbacks. Mammography is very difficult because there is no
normal appearance of the breast that can be memorized; every breast is uniquely individual6. In addition, in the United
States, mammography's low positive predictive value (PPV) (15% to 30%5, 7) means a high proportion of women who
are subject to biopsies have benign breast disease. The low PPV of mammography increases patient anxiety, discomfort,
and cost of care. It also contributes to reduced patient participation.

david.catarious @duke.edu; phone 919.668.2539; fax 919.684.3934; DUMC Box 2623, DUMC, Durham, NC 27710

Medical Imaging 2003: Image Processing, Milan Sonka, J. Michael Fitzpatrick, Editors, 111
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To aid mammographer's in identifying mammographic abnormalities, much research has been directed towards
developing computer-aided detection (CAD) systems. These systems are meant to serve as second-readers to provide
mammographer's with a second opinion. Studies have demonstrated these systems to have a beneficial effect on
mammographers' sensitivity while not being detrimental to their specificity8 .

We have created a preliminary CAD system designed to detect mammographic masses. The proposed CAD system will
consist of the components given in Figure 1. The system input will be a mammographic image. Using a pattern
template and a pattern matching procedure, the CAD system will highlight areas of the image that are suspicious of
being masses. From the highlighted image, specific regions of high suspicion will be identified and localized. These
regions will then be described by a specific set of features. Specifically, we have investigated the combination of
morphological, fractal, and channelized Hotelling observer (CHO) features. Using these descriptors, each region will be
identified as being a mass or nonmass via classification and false positive reduction. The output of the system will be an
image with highly suspicious regions identified. The system performance will be judged via free-response receiver
operating characteristic (FROC) analysis.

2. MATERIALS AND METHODS

2.1 Database of Mammograms
The database of cases employed in this study was extracted from the Digital Database for Screening Mammography
(DDSM) provided by the University of South Florida9. The DDSM contains 2,620 cases compiled by three institutions.
Three scanners, at three different resolutions, were employed to digitize the mammographic films. For this study, we
chose to use cases scanned by the Lumisys scanner at fifty microns-per-pixel.

From the Lumisys-scanned images, we randomly selected eighty images. Of these eighty images, forty images
contained forty-nine masses (twenty-five malignant and twenty-four benign). The remaining forty images contained no
mass findings. Although the DDSM contains both craniocaudal (CC) and mediolateral oblique (MLO) view
mammograms, we chose to examine only images taken from the CC view.

At a resolution of fifty microns, the image size for the mammograms varied but averaged roughly 6,000 by 4,000 pixels.
To obtain images of a uniform size; the maximum number or rows and columns was computed and each image was
padded with the appropriate number of zeros. The images were then spatially averaged down to a size of 1,508 by 1,064
pixels (a resolution of 200 microns-per-pixel).

From the information contained in the DDSM, we extracted outlines of the masses. These outlines defined our ground
truth.

2.2 Overview of CAD System
An overview of the developed CAD system is given in Figure 1. The initial input is a CC view mammogram. First, the
image is filtered to enhance possible mass locations (A). From the filtered image, a multi-level gray level thresholding
procedure defines specific suspicious regions (B). From these suspicious regions, features are extracted (C). A subset of
these features is then selected (D) and used to classify the suspicious regions and reduce the number of false positives
(E).
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Figure 1. Overview of the CAD system.

A. Filtration
To identify the locations of abnormalities in mammograms, previous researchers have employed a variety of methods 10-

We chose to identify suspicious masses through filtering the images with a mass-like filter template. This approach
requires the selection of an appropriate mass template and a template matching procedure.

Since masses are typically round and can have varying degrees of border-sharpness, a Gaussian filter is a natural choice
to model the masses. The Gaussian chosen must have a relatively small width'. Alternatively, Gaussian filters may also
be used as averaging filters. To achieve an overall smoothing effect, the Gaussians chosen for averaging should have a
relatively broad extent. Because of the versatility of the Gaussian filter, a difference of Gaussians (DOG) filter is an
effective mass template. Past research has demonstrated the usefulness of DOG filters for similar tasks' 0° 2 .

A DOG filter is created by subtracting a rotationally-symmetric, two-dimensional Gaussian with width parameter 0rl
from a rotationally-symmetric, two-dimensional Gaussian with width parameter C 2, where clU > 0r2. Subtracting the
Gaussians results in a filter that has a narrow, positive peak in the center surrounded by negative lobes that gradually
increase back to zero.

The DOG filter has three parameters: the widths of its constituent Gaussians and the template window size. Note that
the template window size does not affect the performance of the template window unless it truncates the Gaussians. It
does, however, affect computation time and thus should be kept as small as possible. We selected width parameters of
90 and 45, respectively. The window size for the DOG filter template was 120 pixels.

To employ the DOG filter template to locate suspicious masses, we implemented normalized cross correlation (NCC)' 8 -

20. Although cross correlation is familiar and computationally efficient, it is amplitude dependent. Since the density in

mammograms can widely vary, cross-correlation is of limited usefulness for this task. Alternatively, NCC is invariant to
varying background scale. NCC computes the correlation between the mass template and the underlying mammographic
image. Areas of the image that follow the same profile will return a value of one; areas that are exact opposites of the
template will return negative one.

Although NCC cannot be entirely implemented in the frequency domain, a fast implementation is available through the
use of running sum matrices2 1. The only additional parameter for NCC is the size of the windowing operator. In thiscase, the window size was selected to be equivalent to the size of the DOG filter template.

B. Suspicious Region Identification
The areas in the filtered image that best match the filter template will contain the brightest grayscale values. To
distinguish these areas from the rest of the image, previous researchers19' 22, 23 have employed a gray level thresholding
technique. By selecting the pixels with values above certain thresholds, the most suspicious regions will be identified.
Determining thresholds based on percentiles of the gray scale histogram provides a general procedure that can be
performed on an image-by-image basis.

1 Note that we will refer to a Gaussian's "width,, instead of its variance. This is because these Gaussians are being used as static filter

templates, not as distributions of random variables.
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Our method of suspicious region identification is also based on thresholding the histogram of the filtered images.
Initially, a set of threshold values is determined by selecting the increasing percentages of the gray levels. In our current
implementation, we select the pixels from the top 1% to the top 21% in steps of 2%, for a total of eleven thresholds.

The result from the thresholding process is a set of images, each containing suspicious regions. To reduce the number of
suspicious regions, we combine the regions on each level into one image, called the duration image. The duration image
consists of regions that have not merged with a neighboring region as the threshold levels progressed. If a region did
merge with another region, it was extracted at the level before it merged. The number of thresholds that a region existed
as an independent entity is denoted as the region's duration. The regions remaining in the duration image were then
passed onto the feature extraction stage.

C. Feature Extraction
For this initial system, we extracted forty-seven features derived from each region's duration, morphology, fractal
dimension, and response to a Laguerre-Gauss CHO (LG CHO).

C.1 Morphological Features
The morphological features extracted were area, eccentricity, and convex area minus area. Convex area is defined as the
area of a region's convex hull (basically a rubber band surrounding the region).

C.2 Fractal Dimension Features
Because of its ability to measure the roughness of an object, fractal dimension has been adopted as a textural feature.
There have been many methods proposed to measure fractal dimension24. In this research, we adopted the covering-
blanket method (CBM) 25, 26. The CBM method takes advantage of the fact that certain measurements of fractal objects

follow Richardson's Power Law: M(E) = KEdD-, where E is the scale value, M(E) is the value of some measured
property at scale E (such as surface area), K is a constant of proportionality, d is the topological dimension, and D is the
fractal dimension.

Thus, to measure the fractal dimension, we must measure a property of the image over several scales (that is, using
windows of several sizes). In this case, we measured surface area. If the surface is truly fractal in nature, plotting the
surface area vs. scale on a log-log plot should result in a straight line with slope d-D. The slope and intercept will be
estimated using regression. In this implementation, the overall slope and intercept is not measured. Instead, the local
slope and intercept are measured. That is, only three points are considered at once to determine the slope and intercept.
This is because real objects rarely exhibit a true linear behavior. The slope and y-intercept over nine scales were
extracted and used as features. As additional features, we also measured the derivative and standard deviations of the
fractal dimension and y-intercepts over all scales. This resulted in a total of forty fractal features.

C.3 Laguerre-Gauss Channelized Hotelling Observer Features
Our final set of features was collected from each region's response to a LG CHO. The LG CHO is a mathematical
observer model designed to process different frequencies present in an image. Ideally, a Hotelling observer (HO)27-29

would be employed that could observe an entire region of interest. However, to create a HO large enough to observe a
30meaningful region would require an inordinate amount of sample images

One method to reduce the dimensionality problem is to use linear functions of the pixels instead of operating on the
pixels directly. In the literature, these functions are known as channels. By using channels, the dimensionality of the
problem can be reduced to equal the number of channels. In practice, the number of channels selected is much less than
the number of pixels, making the problem tractable. After obtaining a region's response to each channel, a HO can be
created. HOs designed for channel outputs are called channelized HOs (CHOs).

The next issue is to decide what to use for the channels. Barrett et al30 state that since most HOs are smooth, smooth
functions should be favored. Also, since the task is to locate masses (which are usually round), the channels should be
rotationally symmetric. Following these constraints, Barrett et a130 suggest exploring a family of functions known as
Laguerre-Gauss (LG) functions. The parameters for the LG CHO employed in this study were determined empirically
by Baydush et a131.
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By filtering the mammograms with the LG CHO filter template, we extracted three features for each suspicious region:
the mean, peak, and standard deviation of the LG CHO output.

D. Feature Selection
Although we have measured a set of features to describe each suspicious region, not all of these features will prove
useful in discrimination. Thus, we will select a subset of features, A, that best separates the masses from the nonmasses.
To select an effect feature subset, we implemented forward searching stepwise feature selection (FS-SWFS)32. In FS-
SWFS, A begins as the empty set and is constructed by sequentially adding features that maximize a performance
criterion, 0. FS-SWFS also deletes features from A if their removal improves 0. The selection process halts when a
subset of a particular size has been found or when 0 does not improve for a given number of iterations. For this
research, we judged performance via a linear classifier and the set 0 equal to the resulting area under the receiver
operating characteristic (ROC) curve.

E. Classification and False Positive Reduction
Once the suspicious regions have been subject to feature extraction and the subset of features has been selected, the
regions are classified as masses or nonmasses. Previous researchers have employed a number of methods to perform
region classification, including linear discriminant analysis (LDA)33' 34, artificial neural networks 35-37, and rule-based
methods'10 38. For our system, we chose to employ LDA via Fisher's linear discriminant3 2.

Fisher's linear discriminant is defined as a ] cS-1 ]ifq - rn2-, where rini is the sample mean vector for class i and S is
the sample covariance matrix for the features. c is an arbitrary constant. This value of a is known as Fisher's linear
discriminant. Note that when c=l, Fisher's linear discriminant is equivalent the Hotelling observer computed with
sample, instead of population, statistics. Also, if we assume the features are multivariate normally distributed with equal
covariance matrices, and we employ sample statistics, Fisher's linear discriminant is a Bayes' classifier.

To train and test the linear classifier, we implemented a round-robin training and testing procedure.

3. RESULTS

Before any classification and false positive reduction, the duration images contained an average of-20 false positives
per image (FPpl). The initial sensitivity was 88% (43/49).

The stepwise feature selection chose the features in Table 1. Table 1 indicates each feature's individual ROC
performance as well as the cumulative ROC performance, where ROC performance is given as the area under the ROC
curve (AUC). The final classifier was constructed using these features.

Features in the Order Chosen Individual AUC Cumulative AUC
Peak of the LG CHO output 0.90 0.90
Area 0.87 0.93
Duration 0.81 0.94
Convex Area - Area 0.77 0.95
Mean of the LG CHO output 0.80 0.95
Standard Deviation of the Fractal Dimension, scale 8 0.75 0.95
Standard Deviation of the y-Intercept, Scale 8 0.76 0.95
Fractal Dimension, Scale 2 0.69 0.95

Table 1: Table of the features chosen by stepwise feature selection. The left column specifies the feature, the center column provides
the feature's individual ROC performance, and the right column indicates the cumulative ROC performance.

The overall system performance is given in the FROC curve in Figure 2. Also given is the system's performance when
only considering the best feature, the peak output of the LG CHO. Note that since no masses were missed in the FPpI
range from -20 to -5 for the final system, this portion of the FROC curve was truncated.
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Figure 2: FROC Curve describing system performance. The solid line describes the system performance when eight features are
utilized by the classifier. The dotted line describes the performance when only the peak output of the LG CHO is considered by the

classifier.

An example of a mammogram processed with this CAD system is given in Figure 3. In the left panel is a CC view
mammogram that contains a malignant mass. The right panel displays the suspicious regions remaining after the
classification stage.

Figure 3: The original CC-view mammogram (left) contains a malignant mass. The resulting output of the CAD program detected
the mass as well as three false positives.

4. CONCLUSIONS

We have developed an initial CAD system for detecting mammographic masses. Our system utilized features based on
suspicious regions' morphology, fractal dimension, and response to a LG CHO. The system is able to achieve -88%
sensitivity with -5 FPpI. It is also able to maintain greater than 80% sensitivity until -2.5 FPpI. As can be seen in Table

116 Proc. of SPIE Vol. 5032



1, the most influential feature was the peak output of the LG CHO. Figure 2 compares the system performance when
using the best eight features to the performance when using just the peak output of the LG CHO. While the system
performance is better when eight features are considered, the system performs remarkably well when just the peak LG
CHO output is employed. At -5 FPpI, the simplified system is still able to achieve -75% sensitivity. Thus, as
demonstrated in previous studies, the LG CHO is very effective at distinguishing mammographic masses from
background structures31. In future work, we will continue to explore the capabilities of the LG CHO.

It was also informative to examine the individual performances of the features selected by the FS-SWFS. Although mist
did not perform extremely well as single features, they were collectively able to increase by ROC AUC from 0.90 to
0.95. Therefore, these features must exhibit some degree of independence and capture different information about the
suspicious regions.

The performance of the fractal features was somewhat disappointing. As judged by ROC AUC, the fractal features only
incrementally increased system performance. They also exhibited low ROC AUCs when considered alone. In fact, two
out of the three morphological features were selected before any fractal features.

Although this system exhibits a high sensitivity at a moderate level of FPpI, there is still more work to be performed. In
the future, this system will be extended by adding more images to the database, adding a step to further reduce the
influence of noisy backgrounds, incorporating a wider range of morphological features, extending the set of textural
measures, incorporating a finer region segmentation, and exploring additional DOG filters and other mass identifying
filters.
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Initial development of a computer-aided diagnosis tool for solitary
pulmonary nodules
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ABSTRACT

This paper describes the development of a computer-aided diagnosis (CAD) tool for solitary pulmonary nodules. This CAD
tool is built upon physically meaningful features that were selected because of their relevance to shape and texture. These
features included a modified version of the Hotelling statistic (HS), a channelized HS, three measures of fractal properties,
two measures of spicularity, and three manually measured shape features. These features were measured from a difficult
database consisting of 237 regions of interest (RO1s) extracted from digitized chest radiographs. The center of each 256x256
pixel ROI contained a suspicious lesion which was sent to follow-up by a radiologist and whose nature was later clinically
determined. Linear discriminant analysis (LDA) was used to search the feature space via sequential forward search using
percentage correct as the performance metric. An optimized feature subset, selected for the highest accuracy, was then fed
into a three layer artificial neural network (ANN). The ANN s performance was assessed by receiver operating characteristic
(ROC) analysis. A leave-one-out testing/training methodology was employed for the ROC analysis. The performance of this
system is competitive with that of three radiologists on the same database.

Keywords: computer-aided diagnosis, artificial neural networks, linear discriminant analysis, pulmonary nodule
classification, ROC analysis, feature extraction

1. INTRODUCTION

In the year 2000, it is estimated that cancers of the lung and bronchus will account for 31% of the cancer deaths in men and
25% of the cancer deaths in women 1 . For both genders, lung cancer is the leading cause of death among all cancers 1 . Early
detection is key to a patient surviving lung cancer with survival rates being 3 to 4 times higher in patients whose cancers were

discovered early compared to those discovered late 1 . Solitary pulmonary nodules are the first sign of cancer found in 20-
30% of lung cancer cases and thus are extremely important to detect in a chest radiograph. Since up to 20% of suspected
nodules turn out to be other entities, it is important to be able to detect and correctly identify lung lesions as nodules or non-

nodules 2.

It has been shown in the literature that the use of a CAD tool can aid a radiologist in the detection and diagnosis of
pulmonary nodules3' 9. While some CAD systems have relied on combining radiologist s observations with image data, our
goal in this study was to develop a CAD system that can aid a radiologist in discriminating between lung nodules and normal
lung lesions based on image data alone. This is desirable because the subjectivity of the radiologists measurements will not
affect the performance of the system.

2. MATERIALS AND METHODS

2.1. Image database

The region of interest (ROI) image database consisted of 237 256x256 pixel regions of interest (ROIs) extracted from
digitized chest radiographs. Each ROI contained a centered nodule that was sent to follow-up (i.e., fluoroscopy or CT) by a
radiologist and whose nature was later clinically determined. The ROIs were extracted by hand using image display
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software. The three radiologists who examined this database achieved ROC areas of .72 (.03), .79 (.03), and .83 (.03). For

further information on this database, see Drayer et a110 . Note that the images which contained a lung nodule will be referred
to as positive images while those that contained no nodule will be referred to as negative images. Examples of a positive
image and a negative image are given in Figure 1.

Figure 1. Sample ROIs from the image database. The image on the left is positive (contains a nodule)
while the image on the right is negative (does not contain a nodule).

2.2. Features and feature extraction

Ten features were selected for use in this CAD system. They included a modified Hotelling statistic (HS), a channelized
Hotelling statistic (CHS), three measures of fractal properties, two spiculation measures, lesion radius, lesion circularity, and
lesion compactness. The first seven of these features were algorithmically computed while the latter three were measured by
hand. They were selected based on their relevance to the shape and texture of the lesions being discriminated.

The Hotelling statistic (HS) is a measure that has been proven to be effective in the detection of signals in correlated

noise1 1-16. It can be derived from the Hotelling trace criterion (HTC), which has been found to correlate highly with human

performance on observer tests 17. In fact, signal detection theory tells us that the HS is the optimal detector in the case where
the signal (lung nodule) and the statistical properties of the noise (background) are known. The HS is computed as:

HS = xY- s ,
(1)

where x is the image to be classified (stored as a lxN vector), 1-1 is the inverse covariance matrix of the images (an NxN
matrix), and sT is the transpose of the known signal (also stored as a lxN vector). Thus, the HS is a scalar descriptor of the
image. Note that Eq.(l) is equivalent to the log-likelihood function derived in signal detection theory. The HS also assumes
that the pixels of the image should be approximately normally distributed (at least locally) over the entire image population.

In this setting of classifying a lesion as lung nodule (positive) or not a nodule (negative) in real chest radiographs, neither
the true signal nor the statistics of the background noise are completely known. Thus, they both must be estimated.
Estimating the signal is a simple matter of averaging all of the positive cases, averaging all of the negative cases, and
subtracting the two average images. This will provide a decent approximation of a positive image though this type of
estimation is highly dependent upon the size of the database. The average images of the positives and negatives are shown in
Figure 2 while their center profile is shown in Figure 3. It can been seen in these figures that the average images and central
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profiles are very similar for the positives and negatives, which helps to explain why pulmonary nodule detection is such a
difficult task.

Figure 2. The image on the left is the average positive image while the image on the right is the average negative image.
Notice how each image contains a perturbation in the center. Both images are displayed over a range of gray-values from

2650 to 2905.
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Figure 3. Plots of the profiles of the average images of the positive cases and the negative cases. They are profiles of the
images in Figure 2 going horizontally across the center. Note the similarity in the central region and general trend of the

pixel values.

Obtaining an estimate of the covariance matrix is more problematic. Since the images being used in this study are
256x256 pixels, at least 2562 images would be needed to compute the covariance matrix. It is recommended that 3 to 10
times this number be used so as to have an accurate estimate of the covariance matrix1l. Collecting this many chest
radiographs would be an intractable task. To avoid the need for this many images, the 256x256 pixel images were
subsampled into 8x8 pixel images by segmenting the images into 64 subregions and then averaging the pixels within each
subregion. The covariance matrix of this new image set is only 64x64 pixels and thus can be estimated from the database.
Note that the estimated signal will now only be 8x8 in size as well.

Another way to reduce the dimensionality of the covariance matrix is to use the channelized Hotelling statistic (CHS). In
the channelized version, the images are filtered by a set of frequency-selective channels which are meant to simulate the

human visual system 1 4 ,15 . In this study, ten channels were chosen to extract data from the images. The channels were

defined by Laguerre-Gauss functions, which are a class of radially-symmetric curves 16. By selecting ten channels, the
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images are effectively described by a length ten vector, reducing the covariance matrix to 1OxlO in size and thus making the
computation of the covariance matrix possible. The CHS is then computed as:

CHS= JS-'h
(2)

where f is the lxlO feature vector, S1 is the 1OxlO inverse covariance matrix of the'channel-filtered images, and hT is the
transpose of the lxl0 average signal feature vector.

Another feature that describes the texture of an object in an image is the fractal dimension. In a general sense, the fractal
dimension of a surface is a measure of its roughness. Fractal dimension provides a means to quantify how irregular, jagged,
crinkly, curvy, and space-filling a surface is. Note that unlike Euclidean dimensions, the fractal dimension of an object is not
an integer since it describes how much space an object fills between Euclidean dimensions.

In the literature, there are many definitions and many different ways to compute the fractal dimension of an object. In
this study, we adopted the method put forth by Peli 18 and Peleg et a119 which was derived from one of Mandelbrot s methods
to measure the coastline of Britain in The Fractal Geometry of Nature 20. This method, called the covering-blanket
method, basically works by defining an upper and lower bound on the image and iteratively raising and lowering the surfaces
in a window of increasing size via erosion and dilation. The size of the window at each iteration is denoted by e. At each
iteration of this process, a measure of the surface area is calculated. It is known that the surface area of a fractal follows a
power law behavior with respect to its fractal dimension. This power law behavior is described explicitly by Richardson s
Power Law 21:

M(e) = Ked-D,

(3)

where M(e) is some measured property at scale e, K is a constant, d is the Euclidean dimension, and D is the fractal
dimension. In this situation, M(e) is the surface area at scale e. Thus, by taking the natural logarithm of both sides of Eq.(3),
it can be seen that the fractal dimension represents the slope of a line. This fractal dimension is determined by finding the
regression line through the data points and calculating its slope. Along with the slope, the y-intercept of the regression line
can easily be determined and used as an additional fractal feature.

For the images in this study, three fractal properties were selected: the overall fractal dimension of the entire image, the
overall y-intercept, and the fractal dimension of the center portion of the ROI (where the center portion refers to the central
region when the image is divided into nine equal subregions).

Spicularity is an important property to describe because of its prevalence in lung nodules 2 . To measure the degree of
spicularity of the lesions, the convex hulls of the masses were computed. The convex hull is defined as the convex polygon
of least area that completely covers an object 22. The convex hull can be easily pictured as the outline of a rubber band
wrapped around an object. Two measures involving the convex hull were used in this study: the area of the convex hull and
the ratio of the mass area to the convex hull area.

Besides the algorithmically determined features described above, three hand-measured features were also used in this
study: lesion radius, circularity, and compactness. Although it may be undesirable to use non-machine calculated features,
these features were included because they were readily available and can be algorithmically calculated.

The lesion radius was determined as the radius of the circle that had the same area as the lesion. Circularity was
calculated as the ratio of the number of pixels inside a circle of the same area to the number of pixels inside the outline of the
lesion. Compactness was calculated as N2 /(41)S, where N is the number of pixels in the lesion s perimeter and S is the
number of pixels in the region.
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2.3. Rank ordering of features

It is well known that redundant or linearly dependant features can degrade the performance of an artificial neural network
(ANN). To identify which features aided and/or limited the discriminatory ability of this CAD system, the entire feature
space was searched via a sequential forward search using linear discriminant analysis (LDA). During the sequential forward
search using LDA, percent correct was used as the performance metric. During the first stage, each feature was examined
individually by the LDA and the resulting percent correct was determined. At the end of the first stage, the feature which
garnered the highest accuracy was noted and removed from the feature set. During the second stage, each remaining feature
was paired with the best feature and again examined by the LDA. At the end of the second stage, the feature which provided
the best accuracy, when paired with the best feature, was removed from the feature set. This process continued until a rank
ordering of the features had been determined.

This was an essential step because optimizing an artificial neural network can be a time consuming process due to the
number of free parameters involved. For example, to exhaustively search the feature space by looking at every combination
of features would require 1,023 comparisons of feature subsets, not to mention optimizing the momentum rates, learning rate,
and number of hidden nodes. Since LDA has no free parameters to adjust, it is much easier to determine the rank ordering of
the features using the LDA than an ANN. By identifying the most and least important features before implementing the
ANN, the optimization process could proceed in an organized and efficient manner. Note that it is also desirable to keep the
number of inputs low (especially when using a limited training set) since networks with a large number of connections, in
comparison to the number of training cases, tend to lose their generalization capabilities.

2.4. Classification

The final classification was performed via the use of a multi-layer ANN trained by backpropagation. ANNs have become a
very popular method to perform the classification of lung nodules in CAD systems3-6,8, 9 . Initially, the network was given all
ten features as inputs. To optimize the network s performance and reduce the complexity of the network, one feature at a
time was removed from the network, in the order prescribed by the LDA, until the best performance was found. The
activation function used was the logistic sigmoid function. As is usually the case, the number of hidden nodes was
determined experimentally. The input data was normalized to be between 0 and 1. The network was trained so that 0
represented a negative and I represented a positive. The neural network was trained via a leave-one-out training/testing
methodology. Mean-squared error (MSE) was used as the minimization criteria for training. Receiver operating
characteristic (ROC) analysis was performed on the output of the ANN so that the results from the ANN could be compared
to those of the radiologists.

3. RESULTS

The ten features being studied for use in the CAD system are listed in Table I along with the ROC areas that each feature
provides when used on its own. As seen in Table 1, the ROC areas range from very poor to reasonably well (.533 to .706).

Table 1. ROC Areas for each of the features when analyzed individually.

Feature ROC Area (Az)
Modified Hotelling Statistic .706
Channelized Hotelling Statistic .660
Overall Fractal Dimension .535
Overall Y-Intercept from Fractal Regression Line .550
Center Fractal Dimension .533
Convex Hull Area .603
(Mass Area)/(Convex Hull Area) .615
Lesion Radius .592
Lesion Compactness .575
Lesion Circularity .611
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After searching the entire set via the sequential forward searching LDA, it was determined that the features follow the
subsequent order in terms of contributing to the classification ability: modified HS, lesion radius, center fractal dimension,
channelized HS, convex hull area, (mass area)/(convex hull area), overall fractal dimension, overall y-intercept from the
fractal regression line, lesion compactness, and lesion circularity. The accuracy of the LDA, with the features added in the
prescribed order as well as individually, is given in Table 2.

Table 2. The order and accuracy of the features determined by the LDA.

Order of Features Individual Cumulative
Selected by LDA Percent Correct Percent Correct

Modified Hotelling Statistic .66 .66
Lesion Radius .54 .70
Center Fractal Dimension .58 .69
Channelized Hotelling Statistic .62 .70
Convex Hull Area .54 .72
(Mass Area)/(Convex Hull Area) .57 .72
Overall Fractal Dimension .54 .72
Overall Y-lntercept from Fractal Regression Line .62 .71
Lesion Compactness .54 .73
Lesion Circularity .60 .73

After the classification order of the features was determined by the LDA, the neural network optimization was performed.
First, all ten features were used as inputs to the network and the ROC area was calculated. Next, the least valuable feature
(determined form the LDA analysis) was removed and the remaining nine features were used as inputs to the network. This
process continued all the way down to just using one input to the network. After examining the results for the different
number of inputs, it was determined that the optimum performance was achieved when the top seven features were selected
as inputs to the network. Thus, the final network had seven input nodes, three hidden nodes and one output node. The set of
features used was the first seven features in Table 2, ranging from the modified Hotelling statistic to the overall fractal
dimension. This combination of features produced a network that achieved an ROC area of .78. The resulting ROC curve is
given in Figure 4.

ROC Curves from Radiologists and ANN
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Figure 4. ROC (Receiver Operating Characteristic) curve generated from the ANN. The curve has an area of .78. The x-
axis represents the False Positive Fraction (1-Specificity) while the y-axis represents the True Positive Fraction (Sensitivity).
The ideal CAD system would achieve an Az of 1, denoting that it is 100% sensitive (no false negatives) and 100% specific

(no false positives).
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4. CONCLUSIONS

As can be seen from Tables I and 2, the only feature to exhibit any reasonable classification ability when used alone was the
modified Hotelling statistic. For the most part, the rest of the features performed poorly. Thus, it is interesting that
combining features that individually had almost no discriminatory ability (like the fractal features) would produce a CAD
tool that performed at a level competitive with that of three radiologists. This suggests that the reason lung nodule detection
is such a difficult task is because so many features must be taken into account and no one feature can be used to make a
confident decision.

The fact that the modified Hotelling statistic performed so well is also interesting to note. Since the modified Hotelling
statistic performed its analysis on images which had been subsampled and averaged, it made its decisions based on the low
frequency content of the image. This is surprising since most of the fine details of the nodule have effectively been
eliminated in each of the subregions. Therefore, it seems that this CAD system may concentrate first on low-frequency
content of the image and then fine tune its decisions based on more high-frequency details.

Although this CAD system performed admirably on this data set, more research needs to be performed before its true
performance can be assessed. The largest limitation of this analysis is the size of the database used and thus more images
need to be collected.

Overall, the performance of this CAD system is high enough to merit further research. It also suggest that a system based
solely on texture and shape measures could be a viable CAD tool.
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In previous research, we have developed a computer-aided detection (CAD) system designed to
detect masses in mammograms. The previous version of our system employed a simple but impre-
cise method to localize the masses. In this research, we present a more robust segmentation routine
for use with mammographic masses. Our hypothesis is that by more accurately describing the
morphology of the masses, we can improve the CAD system's ability to distinguish masses from
other mammographic structures. To test this hypothesis, we incorporated the new segmentation
routine into our CAD system and examined the change in performance. The developed iterative,
linear segmentation routine is a gray level-based procedure. Using the identified regions from the
previous CAD system as the initial seeds, the new segmentation algorithm refines the suspicious
mass borders by making estimates of the interior and exterior pixels. These estimates are then
passed to a linear discriminant, which determines the optimal threshold between the interior and
exterior pixels. After applying the threshold and identifying the object's outline, two constraints on
the border are applied to reduce the influence of background noise. After the border is constrained,
the process repeats until a stopping criterion is reached. The segmentation routine was tested on a
study database of 183 mammographic images extracted from the Digital Database for Screening
Mammography. Eighty-three of the images contained 50 malignant and 50 benign masses; 100
images contained no masses. The previously developed CAD system was used to locate a set of
suspicious regions of interest (ROIs) within the images. To assess the performance of the segmen-
tation algorithm, a set of 20 features was measured from the suspicious regions before and after the
application of the developed segmentation routine. Receiver operating characteristic (ROC) analy-
sis was employed on the ROIs to examine the discriminatory capabilities of each individual feature
before and after the segmentation routine. A statistically significant performance increase was found
in many of the individual features, particularly those describing the mass borders. To examine how
the incorporation of the segmentation routine affected the performance of the overall CAD system,
free-response ROC (FROC) analysis was employed. When considering only malignant masses, the
FROC performance of the system with the segmentation routine appeared better than the previous
system. When detecting 90% of the malignant masses, the previous system achieved 4.9 false
positives per image (FPpI) compared to the post-segmentation system's 4.2 FPpI. At 80% sensitiv-
ity, the respective FPpI were 3.5 and 1.6. © 2004 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1738960]

Key words: mammographic mass segmentation, computer-aided detection (CAD), mammography,
image processing, linear discriminant

I. INTRODUCTION patients with distant metastases have a 5-year survival rate of
23%.l It is clear that detecting breast cancer at an early stageBreast cancer is the second-most deadly type of cancer for

women in the United States.' The American Cancer Society is critical to patient care.

estimates that in 2003, invasive breast cancer will be diag- The most common and effective early-detection tool cur-

nosed in 211300 women and will kill almost 40000 rently available to clinicians is screening mammography. To

women.1 Survival rates are significantly higher when the aid mammographers in reading mammograms, research has
cancer is detected at an early stage.2- 4 The 5-year survival been directed towards developing computer-aided detection
rate for patients with localized breast cancer is 97%, while (CAD) and computer-aided diagnosis tools. CAD algorithms
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may operate differently than mammographers and thus may A. Filtration
have the ability to add a unique viewpoint. Mammograms

are read more accurately when read by more than one 8'I1. Suspicious Region
mammographer; 2' 5' 6 unfortunately, having multiple main- o . .cio Rion

mographers read the same case is neither time- nor cost-
efficient. CAD systems have been demonstrated to be able to See nta t
serve as reliable, accurate, and efficient second-readers to aid I I
mammographers. 5,7,8 '•

One of the key components to most CAD systems is the r. F ,-aur•,xraion ,ý-

segmentation of regions that are potential masses. Segmen- D, Feature Selection ]
tation algorithms are designed to accurately identify the bor-
der of a particular object, such as a mass or calcification in a E. Classification and False
mammogram. Since the border of a mass may be indicative Positive Reduction
of its pathology, describing the mass border can have an
impact on the diagnostic performance of the CAD system. In FIG. 1. Flowchart showing the components of the previously developed
addition, the accuracy of both morphological and textural mass CAD system. The dashed lines show the placement of the new seg-

mentation algorithm.
measurements of a mass is influenced by the correct identi-

fication of the mass border. If a segmentation procedure does
not perform well, the features used to describe the suspicious mographic images that were selected for this study. The
region may not be accurate, causing the CAD system to per- evaluation procedure is provided in Sec. II E.
form at a suboptimal level.

In the past, CAD researchers have implemented several II.B. Previous CAD system
different segmentation schemes. For example, Huo et al. em-
ployed gray level region growing, which successively adds The CAD system developed previously (Fig. 1) is a multi-
neighboring pixels to a region if they meet a specified stage algorithm consisting of (A) filtration, (B) suspicious
criterion.9"10 Petrick et al. developed a method known as region localization, (C) feature extraction, (D) feature selec-
density-weighted contrast enhancement which combined tion, and (E) classification/false-positive reduction. The fil-
adaptive filtering and edge detection.1 te Brake et al. ex- tration (A) is performed with a difference of Gaussians
plored discrete dynamic contour models, which segment ob- (DOG) filter implemented via normalized cross correlation.
jects by balancing internal and external energy functions.12  The suspicious region localization (B) is based on a progres-

In this paper, we present a simple and efficient procedure sive gray level thresholding procedure. The features ex-
to segment potential masses based on an iterative, gray level- tracted in (C) include both morphological and textural mea-
based linear discrimination. We examine the capability of the surements and are selected (D) via a stepwise procedure.
segmentation routine as applied to mammographic masses. Finally, the classification and false-positive reduction (E)
We also incorporate the segmentation procedure into a mam- were performed with Fisher's linear discriminant. Each por-
mographic mass CAD system and examine its effect on over- tion of the algorithm is discussed below. This system follows
all system performance. the same basic structure that was described in Catarious

et al."3

II. MATERIALS AND METHODS 1. Filtration

II.A. Overview To identify potential masses, we employed a DOG filter.
Past research14-16 has demonstrated the usefulness of DOGmographic masses. Briefly, the proposed segmentation filters for similar tasks because they perform both mass de-

methodconstructsoutlinesofmographic masses.rriths p e stection and background suppression in one step. To employ
method constructs outlines of mammographic structures by the DOG filter to search for potential masses, we used nor-
employing linear decision models to differentiate the struc- 17,18
ture's interior and exterior pixels. After applying a decision malized cross correlation (NCC).

threshold to estimate the object's border, two border con-
straints are applied to decrease the influence of background 2. Suspicious region localization
noise on the result. This procedure iterates until a stopping The areas in the filtered image that best match the filter
criterion is achieved. template will contain the highest NCC output values. To dis-

The performance of the segmentation routine is judged by tinguish suspicious regions from the rest of the image, we
(1) its influence on morphological and textural features mea- employed a multi-level thresholding technique similar to that
sured from CAD-identified suspicious regions and (2) the used by previous researchers."'1"9 '2  We define a set of
change in the FROC performance achieved by incorporating thresholds based on the gray level histogram of the filtered
the segmentation routine into the CAD system. The CAD image. At each threshold level, a new image containing sus-
system is reviewed in Sec. JIB. After discussing the system's picious regions is created.
components, we detail the implementation of the segmenta- To combine these images into one, we calculated the du-
tion procedure in Sec. II C. Section II D discusses the maam- ration of the regions. The duration of a region is defined as
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the number of thresholds that the region exists as an inde- nant function. Specifically, we implemented Fisher's linear
pendent entity (i.e., number of sequential thresholds for discriminant,24 which, given a set of multidimensional data
which it grows without merging with a neighboring region). from two classes, projects the data onto the line that maxi-
As the threshold percentage level gets higher (thresholds get mally separates the means of the two classes while minimiz-
lower), regions grow and merge with one another. To prevent ing the variance within each class.
this merging from occurring, the regions are extracted from
the thresholded images at the end of their duration (i.e., just II.C. Mass segmentation
before merging) and are combined into one binary image,
called the duration image. The proposed segmentation routine has been developed

because, although the duration image technique (Sec. II B2)
3. Feature extraction can accurately identify the most suspicious regions in the

A total of 20 features, both morphological and textural, image, the segmentations of the masses do not reflect the

were measured for each suspicious region in the duration detailed morphology of the mass. The inaccuracy of the

images. The morphological features measured were area, ec- method arises mainly because the object borders are deter-

centricity, major and minor axis length, area of the convex mined from the filtered images, not the original images.

hull, equivalent diameter, solidity (area/area of the convex Since the DOG filter is designed to look for round masses,

hull), extent (area/area of the bounding box), circularity, and the filtered versions of the original images contain round

seven features derived from the normalized radial length blobs. Even masses that are not round are replaced with

(NRL):11 NRL mean, standard deviation, entropy, area ratio, semi-round blobs. Details about the mass border, such as fine

zero crossing count, spread, and change. Details on the first spiculations, are lost in this procedure. Thus, the features that

five of the NRL features can be found in Petrick et al. 11 and relate to the mass border are affected.
Kilday et al.,21 while details of the latter two can be found in To recover these features, we have developed an iterative,

Catarious et al. 13 The texture features included the mean, gray level, linear segmentation procedure. The procedure be-

peak, and average output of the DOG filter within each sus- gins by examining a region of interest (ROI) that is identified

picious region as well as contrast. by the CAD system as containing a suspicious region. Un-
sharp masking is applied to the ROI to compensate for back-

4. Feature selection ground nonuniformity. The procedure then iterates by esti-
mating the pixels interior and exterior to the object,

Once the features have been extracted from the images, a determining an optimum gray level threshold to separate the
reduced set of features are identified.22'23 The goal of feature interior and exterior pixels, and constraining the resulting
selection is to identify asubset of features, denoted A, that object border. The procedure halts when a stopping criterion
improves the discrimination of the regions. Feature selection has been achieved.
can reduce computation time, eliminate redundant/linear de- The input to the algorithm is a ROI containing a suspi-
pendent features, eliminate noisy features, and simplify the cious region [Fig. 2(a)]. For each suspicious region in the
classification process. duration image, the initial seed point is selected as the pixel

We implemented a version of stepwise feature selection with the highest gray value within 3 mm (15 pixels) of the
(SWFS). 24 In SWFS, features are alternately added and de- centroid of the region. Around the seed point, a square, 42.6
leted from A. A feature is added to A if its inclusion results in mm (213 pixel) ROI, centered at the seed point, is extracted
higher classification accuracy (as judged by the empirical from the unsharp masked image [Fig. 2(b)].
area under the ROC curve, denoted AUC). Similarly, a fea- For the initial iteration, the border of the object is selected
ture is removed from A if classification performance im- to be a circle of radius 16 mm that surrounds the center of
proves with the deletion of a previously included feature, the ROI [Fig. 2(b)]. All pixels inside the circle are consid-
The process of adding and deleting features from A halts ered interior, while all pixels outside the circle are consid-
when the performance criterion stops improving or a certain ered exterior. To refine the estimate of the object's border, a
number of features is achieved, threshold to separate the object's interior and exterior pixels

Although SWFS is not guaranteed to provide the optimal is computed via Fisher's linear discriminant:
subset of features, performing an exhaustive search with 20
features is computationally intractable. -TS- I T -I(=XXint--Xext)-- ý(Xint--xext) S_ (Xint-]xext),

5. Classification and false-positive reduction where the scalar t is the threshold, xis the vector of pixel

Once the reduced set of features has been selected a dis- values, Xint and Xext are the sample means of the values of the
crimination function is employed to make the overall classi- interior and exterior pixels as defined in the previous seg-
fication decision. Some of the more popular classifiers are mentation, and S is the sample covariance matrix. In this
based on linear discriminant analysis,22' 25 artificial neural instance, gray level value is the only feature used to discrimi-
networks,12,26,27 and rule-based methods. 14' 28 Each has nate between the interior and exterior pixels. Thus, each of
shown success in both detection and diagnostic settings. the vectors in the discriminant function reduces to a scalar.

To separate the masses from other mammographic struc- The covariance matrix simplifies to the pooled variance of
tures, we implemented a linear classifier, or a linear discrimi- the gray levels of the interior and exterior pixels. Fisher's

Medical Physics, Vol. 31, No. 6, June 2004
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FIG. 2. The progression of the new
segmentation method. (a) A 42.6 mm
by 42.6 mm (213 pixels) ROI contain-
ing a malignant mass. (b) The ROI in
(a) after applying the unsharp masking
to reduce the influence of a nonuni-
form background. The circle around
the mass represents the initial segmen-

(e) tation. (c) The ROI after the first opti-
mal threshold has been applied. (d)
The center connected component of
the thresholded ROI in (b). (e) The
[r, 0] matrix computed from the cen-
tral connected component in (b). (f)
The [r,O] matrix after the constraints
have been applied. (g) The segmenta-

(f) tion after the algorithm's first iteration.
(h) The final segmentation (after four
iterations).

(W) (h)

linear discriminant projects the data onto the line that best applied. The algorithm searches in the r dimension for inte-
separates the class means relative to the variance. The thresh- rior pixels separated by more than d pixels. In vectors where
old t is the midpoint on the projected line. this occurs, the "border pixel" is selected to be the last in-

The resulting threshold t is then applied to the ROI [Fig. terior pixel before the gap. This constraint helps to eliminate
2(c)]. The connected region that contains the center of the random structures that may cross through the region from
thresholded ROI is selected as the candidate region segmen- being included in the segmentation. One example of such a
tation [Fig. 2(d)]. Selecting only the center region eliminates spurious structure appears at the 10 o'clock position in Fig.
any neighboring, but unconnected, structures that were above 2(c) and again in Fig. 2(d). As seen in Fig. 2(f), the structure
the threshold t. is eliminated by this constraint. Note that some gap between

At this stage, it is possible that background structures are neighbors is allowed in case the suspicious mass does not
identified as being part of the interior. Two constraints are have interior pixels uniformly above the chosen threshold t.
applied to the new object outline: (1) the interior pixels on The second constraint controls the roughness of the seg-
each ray emanating from the center must have gaps of no mented border. Since large distances between neighboring
more than d pixels, and (2) the pixels along the object's border pixels may be caused by the presence of noisy back-
border must be within a specified distance of their immediate ground structures, the border is adjusted to limit the dis-
neighbors. tances between each border pixel in the [r, 0] matrix. Begin-

Before applying the constraints, the binary ROI contain- ning at the first r-vector in the matrix, the border is traversed.
ing the segmentation estimate is transformed into polar co- The traversal proceeds as follows: Let [r-1 ,0_1] and
ordinates. The center of the ROI serves as the origin and rays [ r 0 , 00] represent the previous border pixel and the current
of length r are extracted at each angle, 0. The rays, r, have a border pixel being examined. If the city-block distance be-
length of 80 pixels. The result of the transformation is a tween [r_1,0-1] and [r 0 ,00] is less than a specified dis-
matrix with dimensions [r, 0], where ones and zeros repre- tance n, [r 0 ,00] is accepted as a border pixel. If the distance
sent the segmentation's interior and exterior pixels, respec- is greater than n, [ro,00] is adjusted to be n pixels from
tively. An example of the resulting [r,O] matrix is given in [r- ,09-]. Although large well-defined spiculations will
Fig. 2(e). still be included after applying this constraint, fine spicula-

After the matrix is fully constructed, the first constraint is tions and other border subtleties may be excluded from the
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segmentation. An example of the border remaining after ap- padding to be a uniform size. They were then subsampled by
plying these constraints is shown in Fig. 2(f). a factor of 4, resulting in a pixel resolution of 200 microns

Once both constraints have been applied, the current it- per pixel, which is in a range consistent with that of other
eration is complete [Fig. 2(g)]. If the stopping criterion is researchers.14' 33' 34

met, the procedure is completed. The change in segmenta-
tions between the current and previous segmentations is used
as a stopping criterion. If the stopping criterion is not met,
another iteration is performed. The result of the current itera- To perform this study, we created two CAD systems (sys-
tion is used as the initial segmentation for the next iteration. tems A and B). System A is the previously developed system,
Since there is no previous segmentation on the first iteration, while system B includes the new segmentation routine in-
this algorithm will iterate at least twice. An example of a serted after the suspicious region localization stage. Thus, the
final segmentation is given in Fig. 2(h). first two stages of each system are exactly the same. To begin

Since the determination of the gray level threshold is a our examination, we ran the study database through the first
major portion of this algorithm, it should be noted that other two stages of the CAD system, that is, the filtration and
threshold selection techniques have been developed. For ex- suspicious region localization stages. The systems employed
ample, Otsu 29 developed a method that selects the threshold a DOG filter constructed of Gaussians with symmetric
value that maximizes the between-class variance (and thus widths of 18 and 9 mm (90 and 45 pixels). The size of the
minimizes the interclass variance) of the gray level histo- DOG filter template and the NCC templates was 24 mm (120
gram. Using the refinement suggested by Reddi et al.,30 this pixels). The duration images were created with seven thresh-
threshold can be calculated in an efficient manner. However, olds of 1%-13% in steps of 2%.
unlike Fisher's linear discriminant, their method is unsuper- At this point, the regions identified by system A were
vised and thus is not suitable for an iterative framework, processed by the feature extraction stage. In system B, the
Since the proposed routine improves after each iteration, the suspicious regions were processed first by the new segmen-
threshold selection technique must be adaptable to iterative tation stage and then by the feature extraction stage. For the
implementation. Making no assumptions about the underly- segmentation routine, several combinations of d and n were
ing distributions, Fisher's linear discriminant determines the explored. The parameters that provided the best results and
line that best separate the gray level means of the interior and were used in the final version were 3 and 2, respectively. The
exterior pixels. Since it is easily implemented as an iterative stopping criterion employed was that the object boundary
process, Fisher's linear discriminant is 'an ideal choice to ceased changing. The weighting on the unsharp masking op-
calculate the threshold values. eration was 0.9.

To determine the effect of the segmentation algorithm, a
ROC study was performed to compare the discriminatory

ll.D. Database of mammograms power of the 20 individual features extracted from each of
The mammograms for this study were extracted from the region before and after the new segmentation algorithm was

University of South Florida's Digital Database for Screening applied. Since the shapes of the regions were different after
Mammography (DDSM). 31 With each mammographic im- they were segmented, a few suspicious regions no longer
age, the DDSM contains information about any lesions it corresponded to a mass and vice versa. Thus, a paired t-test
contains, including BI-RADSTM32 assessment, subtlety, pa- could not be employed to judge the performance differences.
tient age, and breast density. Also included with each DDSM In order to take advantage of the regions that were paired,
image is a chain code that defines the lesion boundary that partially paired t-tests were performed using the ROCKIT
was indicated by a radiologist. Using this information, a software package (Charles Metz, University of Chicago, Chi-
"truth" image was created for each image in the study data- cago, IL).
base. Since the system only examines masses, only mass After the feature extraction stage, each system progressed
locations were stored in the truth images for this study. through the feature selection and classification stages. The

A "study database" of 183 mammographic images from stopping criterion adopted was when the empirically mea-
169 patients was collected from the DDSM. The study data- sured AUC did not increase more than 0.005. During the
base consists of 83 images containing 50 benign and 50 ma- feature selection process, the entire study database was used
lignant masses, and 100 "normal" images containing no ab- for training. In the classification stage, the systems were
normalities. All images were originally scanned with a trained and tested using a round-robin sampling. The overall
Lumisys scanner at a resolution of 50 microns per pixel at a systems' performances were examined using both ROC
bit depth of 12.31 Although the images in the study database analysis and FROC curves. The ROC analysis was per-
were randomly selected, the distribution of mass descriptors formed on the ROIs to determine if there was a statistical
closely matched that of the entire collection of masses difference in the final performance of the systems at a sig-
scanned with the Lumisys scanner. No masses having a nificance level of 0.05. When using ROC analysis to exam-
shape of "architectural distortion" as the primary finding ine system performance, the system input was the same set
were included in the study database. The average diameter of of ROIs for systems A and B. However, since the CAD sys-
the masses in the study database was 17 mm. tem also performs the detection task, it is useful to examine

After the cases were selected, they were resized via zero the results via FROC curves. Using the FROC curve, the
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FiG. 3. 40 mm by 40 mm ROls show-
S::ing two malignant masses and one be-

vi• >,,nign (bottom) mass. (a) The detected
mass from the unprocessed mammo-
graphic image. (b) The mass outline
provided by the DDSM. (c) The seg-
mentations provided by the duration

L image technique. (d) The masses seg-
mented with the segmentation routine.

sensitivity can be compared against false positives per image iterative algorithm in system B have much more structure
(FPpl) instead of false positive fraction. Along with the final than the segmentations provided by system A's duration im-
system performance, the performance on only the malignant ages. As seen in Fig. 3, the region boundaries in the truth
masses was also examined. files were not necessarily intended to follow the mass mor-

A suspicious region was deemed to be a true positive if it phology and so were not compared to our segmentation re-
met the following two criteria: (1) the region intersected with suits. The segmentation routine in system B required an av-
the true positive region, outlined in the truth images, and (2) erage of 7.8 iterations for each suspicious region with an
the centroid of the suspicious region was no more than 16 average of 1.7 s per iteration.
mm (80 pixels) from the centroid of the region in the truth Table I shows the AUC achieved by each feature extracted
file. from the regions in systems A and B. Two AUCs are pro-

The computations for this study were performed on a ma- vided for each feature, one for each system. The order in
chine with dual 1.8 GHz AMD (Advanced Micro Devices, which the features were selected by the SWFS algorithm as
Inc., Sunnyvale, CA) processors. The CAD and segmenta- well as the cumulative AUCs as the features were added are

well sysem were cumulammed in~ MATAB (The fetueathaddr
tion systems were programmed in MATLABA (The Math given in the columns next to the AUC values. There were
Works, Inc., Natick, MA). statistically significant performance changes for 11 of the 20

features, shown in the p-values in the right hand column of

III. RESULTS Table I. Both systems selected four features. Of the four

Before the Feature Extraction stage (and after the suspi- features chosen, the systems had only one in common, the
cious region localization stage in Fig. 1), systems A and B peak output of the DOG filter. Additionally, system A se-
were able to detect 98% (49/50) of the malignant masses and lected NRL mean, equivalent diameter, and NRL change,
88% (44/50) of the benign masses, for an overall detection while system B selected minor axis length, NRL spread, and
performance of 93%. The total number of false positive re- solidity.
gions identified in the 183-image study database was ap- System A achieved an overall AUC of 0.91 while system
proximately 3600, for an average of 19.7 FPpI. B achieved an overall AUC of 0.91. There is no statistical

Some examples of segmented objects can be seen in Fig. difference between the overall performances of the systems
3. Shown in the figure are (a) three masses (two malignant, (p-value of 0.82). When considering the performarice on just
one benign) extracted from the original mammographic im- the malignant masses, system A achieved an AUC of 0.92
age, (b) the outline of the mass provided by the DDSM, (c) while system B achieved an AUC of 0.93. Once again, no
the segmentation provided by the duration image technique, statistical difference between the systems was found (p-value
and (d) the segmentations computed with the new segmenta- of 0.41).
tion routine. It is clear that the segmentations provided by the For both systems, Fig. 4(a) shows FROC curves describ-
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TABLE I. The individual AUCs for each of the 20 features measured for system A and system B. The order in
which the features were selected by the stepwise feature selection (SWFS) and the cumulative AUC is also
provided. The final column provides the p-values of the change in performances from system A to system B.

System A System B

Order selected Order selected
(cumulative (cumulative

Features AUC AUC) AUC AUC) p-value

Area 0.79 0.81 0.31
Eccentricity 0.63 0.75 <0.0001
Major axis length 0.73 0.68 0.0032
Minor axis length 0.82 0.83 1 (0.83) 0.17
Area of the convex hull 0.79 0.79 0.085
Equivalent diameter 0.79 3 (0.91) 0.81 0.31
Solidity 0.64 0.71 4 (0.91) 0.0009
Extent 0.52 0.69 <0.0001
Mean DOG output 0.77 0.69 0.087
Peak DOG output 0.83 1 (0.83) 0.82 3 (0.91) 0.71
Std. dev. of DOG output 0.81 0.79 0.0096
Circularity 0.67 0.82 <0.0001
Contrast 0.72 0.73 0.06
NRL mean 0.64 2 (0.90) 0.82 <0.0001
NRL std. dev. 0.64 0.72 0.0046
NRL entropy 0.62 0.64 0.20
NRL area ratio 0.64 0.80 <0.0001
NRL zero crossing 0.59 0.70 0.0012
NRL spread 0.65 0.80 2 (0.87) <0.0001
NRL change 0.73 4 (0.91) 0.76 0.11

ing both the overall performance and the performance on rising from 0.67 to 0.82 with a p-value of <0.0001, making
only the malignant masses. As can be seen, both systems it one of the better performing features in system B. This
perform better on malignant masses than on overall masses, increase is not surprising because, after the segmentation, the
Figure 4(b) shows a partial view of the FROC curve in Fig. majority of nonmass objects should be less circular than they
4(a), showing only the area above 60% sensitivity and less were previously. Overall, the increase in the effectiveness of
than 6 FPpI. In the range from - 1 to 6 FPpI, the overall many of the morphological features validates the segmenta-
performances of systems A and B cross and overlap in sev- tion algorithm.
eral places. For malignant masses, system A has a perfor- Only 2 of the 20 features significantly decreased in ROC
mance advantage from 5.8 to 9 FPpI, a range of 94% to 96% performance: major axis length and standard deviation of the
sensitivity. However, system B outperforms system A below DOG filter output. We feel that the major axis length was
5.8 FPpI, achieving 1.6 FPpI at 80% sensitivity on the ma- more effective presegmentation because many of the non-
lignant masses compared to system A's 3.5 FPpI. mass objects in the duration image were long and thin. After

being segmented, the long, thin objects become more con-
IV. DISCUSSION strained in size, making it more difficult to make a classifi-

From examining Table I, it can be seen that the segmen- cation based on the major axis length.
tation routine made a statistically significant difference in the The effectiveness of the standard deviation of the DOG
discriminatory ability of 11 of the features (9 increased with output decreased due to the increased accuracy of the object
segmentation while 2 decreased). Intuitively, since the shape borders. Since the segmentation procedure groups pixels
of masses is distinctive, we would expect more accurate seg- with similar gray values, the standard deviation of the DOG
mentations to increase the AUCs of the individual features output does not vary greatly between mass and nonmass ob-
describing the border. The fact that the segmentation routine jects.
captures important information in the details of the border Due to the limited size of the study database, all of the
can be seen in the significant performance increases of five data used to select the features was also examined in the
of the seven NRL features: NRL area ratio, NRL mean, NRL classification stage. Thus, some bias is present in our results.
spread, NRL standard deviation, and NRL zero crossing. The In an effort to minimize this bias, the mammograms in the
remaining two NRL features did not change with statistical study database were chosen to be representative (in terms of
significance (p-values greater than 0.11). BI-RADSTM descriptors) of the entire Lumisys-scanned set

Additionally, the improved accuracy in the description of of mammograms. This issue will be resolved in the future by
the masses' overall shapes is evident from the improvement gathering a larger study database and separating the cases
of circularity, extent, eccentricity, and solidity. Circularity and for training and testing.
made one of the more dramatic increases in performance, Unfortunately, we were not able to observe a statistical
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100 aged that our system performs better on the malignant
masses in the lower range of FPpI. When detecting 90% of

80 ....................................... . the malignant masses, system A achieves 4.9 FPpI compared
to system B's 4.2 FPpI, a decrease of 14%. At 80%, system
A and system B's respective FPpI are 3.5 and 1.6, a decrease

'60 ............... .................. of 54%. Preserving a high level of sensitivity as false posi-
tives are reduced is key to the success of a CAD system; it

• ........................................... ....................... -................. has been dem onstrated that, at a constant system sensitivity,
S40 _ _ _ reducing the system's FPpI increases a mammographer's

System A, Overall performance.35

20 .................... System A, Malignant The segmentation routine, however, did not successfully-t- System B, Overall segment each region. For less than 1% of the suspicious
SSystem B, Malignant.......... ...... BM regions, the resulting segmentation was a single pixel. Only

0 5 10 15 20 one of the single pixel segmentations corresponded to a be-
False Positives per Image nign mass. In that instance, the mass was larger than the

(a) segmentation window. Since the interior of the mass was
relatively uniform, no structure was present to be segmented.

100 ----- System A, Overall To deal with masses larger than the window size, a future
System A, Malignant improvement will be to adaptively set the window size. In

95 --.-- System B, Overall........ each of the remaining single pixel segmentations, the suspi-
System B, Malignant cious regions were in a flat gray level region. They were

90- .

identified as suspicious regions mainly because they were
'85 neighbors of other structures identified by the DOG filter.

.Z 80 Thus, since no structure was present, a single pixel is an.. .... ....8........0.. .. ...................
acceptable segmentation.7 ...... ....../ =" ''" ..... ..... .............. g...........

.75 ... The ROIs shown in Fig. 3 demonstrate the qualitative
. :effectiveness of this new segmentation procedure. The seg-

70 :" •mentations presented seem to closely follow the border of

65 .......... ... ........ ..... ........... the masses in each case. Given that the average segmenta-
60 i :tions only took 7.8 iterations, we feel it should be incorpo-

60 1 2 3 4 5 6 rated into our CAD system.
False Positives per Image

(b) V. CONCLUSION

FIG. 4. (a) FROC curves comparing the performances of systems A (without In this study, we integrated a new algorithm to segment
circles) and B (with circles). Both overall performance (dashed lines) and suspicious regions in a mammographic mass CAD system.
malignant performance (solid lines) are shown. (b) A magnified view of the
FROC curve in (a). The proposed segmentation algorithm is an iterative proce-

dure that utilizes a linear discriminant function to separate an
object's interior pixels from its exterior pixels. The algorithm

difference between the total ROC performances of the sys- requires only two parameters: d, the maximum distance be-
tems. However, we still find value in the segmentation rou- tween neighboring pixels on each ray, and n, the allowable
tine because, as mentioned above, the segmentation algo- distance between neighboring border pixels. The inclusion of
rithm improved the efficacy of several of the features, the two constraints on the boundaries helps to exclude spu-
particularly the border-describing features. Although the rious background structures. On average, the procedure com-
ROC analysis could not provide statistical significance to the pletes in only 7.8 iterations. The procedure is based upon
difference in overall system performance, the FROC curves established statistical techniques and is straightforward to
indicate how the incorporation of the segmentation routine implement.
positively affected the CAD system's performance in some Unfortunately, the accuracy of the segmentation routine
key ranges. Although the curves for the overall performance could not be assessed against the radiologist-drawn bound-
crossed a few times in the range from 1 to 10 FPpI, the aries included in the DDSM database. In many cases, the
performance of system B on the malignant masses clearly provided outlines were generous and went beyond the bor-
exceeded that of system A from -0.9 to 5.8 FPpI, corre- ders present on even the most well defined masses.
sponding to a range from 60% to 94% sensitivity. Thus, the However, the increased accuracy of the individual mass
segmentation routine was able to capture the distinct border features validates the segmentation routine's performance. It
characteristics of malignant masses and more easily distin- was found that the segmentation routine affected the perfor-
guish them from other structures. mance of individual features in a predictable and intuitive

Since it can be argued that detecting malignant masses is manner; most of the features describing the mass border in-
more important than detecting benign masses, we are encour- creased with statistical significance. As seen in Fig. 4, the
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ABSTRACT

The purpose of this paper is to present a new segmentation routine developed for mammographic masses. We
previously developed a computer-aided detection (CAD) system for mammographic masses that employed a
simple but imprecise segmentation procedure. To improve the systems performance, an iterative, linear segmen-
tation routine was developed. The routine begins by employing a linear discriminant function to determine the
optimal threshold between estimates of an objects interior and exterior pixels. After applying the threshold and
identifying the objects outline, two constraints are applied to minimize the influence of extraneous background
structures. Each iteration further refines the outline until the stopping criterion is reached. The segmentation
algorithm was tested on a database of 181 mammographic images that contained forty-nine malignant and fifty
benign masses. A set of suspicious regions of interest (ROIs) was found using the previous CAD system. Twenty
features were measured from the regions before and after applying the new segmentation routine. The difference
in the features discriminatory ability was examined via receiver operating characteristic (ROC) analysis. A sig-
nificant performance difference was observed in many features, particularly those describing the object border.
Eree-response ROC (FROC) curves were utilized to examine how the overall CAD system performance changed
with the inclusion of the segmentation routine. The FROC performance appeared to be improved, especially for
malignant masses. When detecting 90% of the malignant masses, the previous system achieved 4.4 false positives
per image (FPpI) compared to the post-segmentation systems 3.7 FPpI. At 85%, the respective FPpI are 4.1
and 2.1.

Keywords: segmentation, computer-aided 'detection (CAD), mammographic masses, ROC analysis

1. INTRODUCTION

Over the past few years, we have been developing a computer-aided detection (CAD) system designed to detect
masses in mammograms. 1,2 An important component of any CAD system is the ability to identify and accurately
outline suspicious regions. Since the shape of a mass is highly indicative of its pathology, capturing the description
of mass borders is paramount to the success of a mass CAD system. To achieve accurate segmentations, other
researchers have employed several methods, including region growing, active contour segmentation, and threshold-
based procedures.

3-6

In this work, we develop a new method to segment masses as well as other mammographic structures. The
quality of the segmentation routine is explored by examining its effect on the ability of morphological and textural
descriptors to separate masses from non-masses. We also examine the impact that incorporating the proposed
routine has on the overall performance of our existing CAD system.
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2. METHODS AND MATERIALS

2.1. Overview

We present a newly developed segmentation routine for use with mammographic masses. Briefly, the segmen-
tation routine estimates the borders of objects by iterative implementation of a linear decision model combined
with two constraints to eliminate extraneous background influence.

The performance of the segmentation routine is judged by (1) its influence on morphological and textural fea-
tures measured from CAD-identified suspicious regions (using receiver operating characteristic (ROC) analysis)
and (2) the change in the free-response ROC (FROC) performance after incorporating the segmentation routine
into the CAD system. We begin by discussing the database of mammograms used in this study in section 2.2.
Sections 2.3 and 2.4 provide a brief review and updates to the CAD system and the extracted features. In
section 2.5 we provide details of the implementation of the segmentation procedure. The study procedure is
provided in 2.6.

2.2. Database of mammograms

The mammograms for this study were selected from the University of South Florida's Digital Database for
Screening Mammography (DDSM). 9 Along with each image, the DDSM provides specific information on each
lesion contained within the image. Using this information, a study database of 181 mammographic images from
169 patients was collected from the DDSM. The study database consists of 81 images containing 50 benign and 49
malignant masses, and 100 normal images containing no abnormalities. All images were originally scanned with
a 12-bit Lumisys scanner at a resolution of 50 microns per pixel. Although the images in the study database were
randomly selected, the distribution of mass descriptors closely matched that of the entire collection of masses
scanned with the Lumisys scanner. Although the DDSM describes some masses as having a shape of architectural
distortion, no masses with architectural distortion as the primary finding were included in the study database.
The average diameter of the masses in the study database was 17 mm.

After the cases were selected, each image was subsampled by a factor of four, resulting in a pixel resolution
of 200 microns per pixel, a range which is consistent with that of other researchers. 10 - 12

2.3. Previously developed CAD system

Since the CAD system used in this research has been previously presented,1 we will give only a brief overview and
discuss only the portions which have changed. The CAD system consists of five components: filtration, suspicious
region localization, feature extraction, feature selection, and classification and false-positive reduction.

In the filtration stage, the mammograms are filtered with a difference of Gaussians (DOG) filter using
normalized cross correlation (NCC),3' r, s as described by the following equation:

0(s, t)=- E V[f(x, Y)- f(xY)][w(x - s, Y- t) -] (1)
ZEX E,[f(x,y) - f(x, y)]2 E. ZY[w(x - s,y - t) - C]2)½

where -y is the filtered image, s and t index the position of the filter template w within the image f, x and y
index the pixels interior to both f and w, Ci is the average value of the template, and f(xy) is the average value
of the portion of the image coincident with the filter template. The denominator in Eq (1) serves to normalize
the filter response between -1 and 1.

In the previous implementation, the NCC operation was implemented exactly as specified in Eq (1). However,
because the gray values at the skin boundary drop rapidly, A(x, y) changes quickly until the filter template is
completely inside the breast. The rapid change in A(x, y) due to the dark region surrounding the breast causes
the filter response to be suppressed along the skin boundary, making it difficult to detect fine structures. To
correct for this response, we adjusted Eq (1) to examine only the pixels interior to the breast (as defined by
our breast outline). This adjustment causes the C term to be a constant value when the template is completely
interior to the breast but to vary when the template coincides with the skin boundary.

In addition to making corrections for the skin boundary, we also adjusted the image to correct for the edge
next the the chest wall. Since the current version of our CAD system examines only craniocaudal view images,
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at the chest wall, the pixel values drop off to zero. Since this hard edge causes filtering effects, to keep the filter
response steady, we mirrored the region adjacent to the chest wall over the chest wall boundary.

By examining the filtered images with a gray level thresholding technique, regions suspicious of being masses
are localized. From these regions, twenty morphological and textural features are extracted. Using a stepwise
feature selection routine, the most effective features are selected and used for classification purposes. Previously,
the feature selection algorithm selected features until the performance criterion, area under the ROC curve
(AUC), did not increase. This implementation resulted in the selection of a majority of the features. Currently,
the feature selection algorithm will only add a feature when its incorporation results in a statistically significant
increase in AUC. The statistical significance is judged by comparing the results of 1,500 bootstrap samples with
the percentile method.

Once the final subset of features is selected, the CAD system employs a linear classifier to designate regions
as being masses or non-masses.

2.4. Extracted Features

For this study, sixteen morphological and four textural features were extracted for each suspicious region.

The measured morphological features included area, eccentricity, major and minor axis length, area of the
cove uleqialn daetr sldiyarea areaconvex hull, equivalent diameter, solidity (area of the convex hull)I extent (area of the hounding box)' and circularity. In

addition, seven features were measured that are derived from the normalized radial length (NRL) 5 : NRL mean,
standard deviation, entropy, area ratio, zero crossing count, spread, and change. Details on the first five of the
NRL features can be found in Petrick et al5 and Kilday et al,13 while details of the latter two can be found in
Catarious et al. 1 The main purpose of the NRL features is to examine the roughness of the border of an object.

The four textural measurements examined are contrast and three features measured from the output of the
DOG filter in each region: the mean, peak, and standard deviation.

2.5. Developed segmentation routine

The developed segmentation routine is an iterative thresholding procedure. Briefly, the procedure begins with
an initial estimate of the border of the selected region. Then, using Fisher's linear discriminant,14 a threshold is
computed to separate the region's interior pixels from the background pixels. The resulting outline is processed
by two constraints designed to minimize the influence of noisy background structures. Once the constraints are
applied, the procedure repeats until there is no change in the computed outline.

To begin, a region detected in the suspicious region localization stage is selected. The center of the region is
selected to be the pixel with the largest gray value within 3 mm (15 pixels) of the centroid of the region. A 42.6
mm by 42.6 mm (213 pixels by 213 pixels) region is then extracted around the chosen center (Figure 1(a)). To
enhance the detected structure, the region is subjected to unsharp masking (see Figure 1(b)).

Using the unsharp masked region of interest (ROI), the initial border is estimated by a circle of radius 16 mm
(80 pixels) surrounding the center of the region, as shown in Figure 1(b). Using the pixels interior and exterior
to the circle, Fisher's linear discriminant is used to compute the threshold the best separates the two regions:

"t = S-(Xint - -text) -- (;(int - -tex)Tsl(int + -text), (2)

where the scalar t is the threshold, x is the vector of pixel values, -int and •ext are the sample means of the
values of the interior and exterior pixels as defined in the previous segmentation, and S is the sample covariance
matrix. Since gray level value is the only feature used to discriminate between the interior and exterior pixels,
each vector in Eq (2) reduces to a scalar. The covariance matrix simplifies to the pooled variance of the gray
levels of the interior and exterior pixels. Fishers linear discriminant provides the optimal separation of the two
classes of sample data because it projects the data onto the line that best separates the class means relative to
the variance; the threshold t is the midpoint on the projected line. Figure 1(c) shows the region in Figure 1(a)
after thresholding.

Since there will be pixels above the threshold that are not part of the object of interest, only the center
connected region is preserved, as in Figure 1(d).
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Figure 1. The first steps in the segmentation procedure. (a) The 42.6 mm by 42.6 mm (213 pixels by 213 pixels) ROI
containing the object to be segmented. (b) The unsharp masked ROI from (a) with a 16 mm (80 pixel) radius circle
representing the initial estimate of the object's outline. (c) The ROI after thresholding. (d) The center-connected region
from (c).

Since it is possible that background structures are still included in the segmentation, two constraints are
applied to minimize their influence. The first constraint examines each ray emanating from the center of the
region and eliminates any pixels that are greater than d mm from the previous interior pixel. This constraint is
designed to remove background structures that may cross through the region and be very close to the structure
of interest. The second constraint forces the border pixels to be within n mm of their immediate neighbors.
This constraint will prevent the segmentation from following a random structure that managed to pass the first
constraint.

To facilitate the implementation of the constraints, the ROI is transformed into polar coordinates. The first
constraint is applied by examining each ray in the r direction independently. Beginning at the pixel at the last
row of the [r, 0] matrix, the distance between interior pixels is calculated. As soon as a gap of d mm or more is
encountered, the remaining pixels on the ray are marked as exterior to the region. The effect of this constraint
can be seen in Figure 2.

The second constraint is applied by traversing the [r, 0] matrix and examining each pair of neighboring
border pixels (where a border pixel is the last interior pixel along each ray in the r direction). For any given
pair, ([ro, Oo], [r1 , 01]), the city-block distance between them is computed. If the distance is greater than n mm,
[ri, Oi] is adjusted to be n mm from [r0 , 00]; otherwise, [r1, 01] is accepted as the border pixel. This procedure of
pairwise comparisons continues until all border pixels meet the constraint.

(a)

(b)

Figure 2. (a) The polar-transformed [r, 0] matrix of the ROI in Figure 1(d) before application of the constraints. (b)
The [r, 0] matrix after application of the constraints. Note the removal of the spurious structure at the 10 o'clock position
in Figure 1(d).

Once the constraints have been enforced, the region is transformed back into spatial coordinates (Figure 3).
The resulting region constitutes the input to the next iteration of the segmentation algorithm. The procedure
halts once there in no change in the border between iterations.
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(a) - (b)

Figure 3. (a) The resulting segmentation after the first iteration. (b) The final segmentation (after the fourth iteration).

2.6. Procedure

For this study, we compared the performance of the CAD system before and after the segmentation routine
was inserted, denoted as the pre-seg and post-seg systems. Both systems employed a DOG filter constructed of
symmetric two-dimensional Gaussians with widths of 18 and 9 mm (90 and 45 pixels). The size of both the DOG
filter and NCC templates was 24 mm (120 pixels). The regions localized by the previous system were identified
by increasing the gray level threshold from 2% through 13% in steps of 2%.

After exploring several combinations of values, the parameters d and n in the segmentation routine were
set to .6 mm (3 pixels) and .4 mm (2 pixels), respectively. 0.9 was set as the weighting factor on the unsharp
masking operation.

ROC analysis was employed to compare the discriminatory power of the twenty individual features extracted
from each of region before and after the new segmentation algorithm was applied. Bootstrap sampling was
employed to determine the statistical significance between the empirical AUCs achieved by each feature. A
feature was deemed to have changed significantly if the change in AUC was significant at the 0.05 level.

As mentioned earlier, the feature selection stage also employed bootstrap sampling to determine whether
or not the addition or deletion of a feature from the model resulted in a statistically significant performance
difference. The significance levels for both adding and deleting a feature were set to 0.05. The AUCs used in the
feature selection stage were computed using the entire dataset for training and testing.

Round-robin training and testing was employed in the classification stage. Since the CAD system also
performs the detection task, the performances of the pre-seg and post-seg systems were examined via FROC
curves. In addition to looking at the performance of the system on masses vs. non-masses, we also examined
how the system performed on just malignant masses.

The computations for this study were performed on a machine with dual 1.8 GHz AMD (Advanced Micro
Devices, Inc., Sunnyvale, CA) processors. The CAD and segmentation systems were programmed in MATLAB
release 13 (The MathWorks, Inc., Natick, MA).

3. RESULTS

Some sample results of the segmentation algorithm are shown in Figure 4. Shown in the figure are (a) 3 masses
(2 malignant, 1 benign) extracted from the original mammographic image, (b) the segmentation provided by
the previous system, and (c) the segmentations computed with the new segmentation routine. By comparing
columns (b) and (c) of Figure 4, it can be seen that the new segmentation algorithm produces segmentations with
finer detail than that of the previous system. The newly developed segmentation routine required an average of
7.8 iterations for each suspicious region with an average of 0.37 seconds per iteration.

Table 1 shows the AUC values and the p-values of the differences of each of the twenty features in the
pre-seg and post-seg systems. The AUCs of seven features increased significantly: eccentricity, solidity, extent,
circularity, NRL mean, NRL ratio, and NRL spread; only one feature, the mean output of the DOG filter, had
a significant decrease in AUC.

Although each system chose three features, the specific features selected by the stepwise feature selection
algorithm differed from the pre-seg and post-seg systems. The pre-seg system chose one textural feature and two
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(a) (b) (c)

Figure 4. Two malignant masses (top two) and one benign mass segmented with the segmentation routine. (a) The
original mass. (b) The segmentation used in the previous version of the system. (c) The new segmentation.

morphological features: the peak output of the DOG filter, the NRL mean, and the NRL spread. The post-seg
system chose three morphological features: minimum axis length, solidity, and NRL spread.

The FROC performances of the pre-seg and post-seg systems are shown Figure 5. The overall performances
of the systems (i.e., the performance in separating masses from non-masses) are about equal; there is very little
difference across the entire range of the FROC curve. However, in the range from 1.5 false positives per image
(FPpI) to 4 FPpI, the segmentation algorithm clearly made an improvement in the performance of the system
on malignant masses. For example, at 90% sensitivity, the pre-seg system marked 4.4 FPpI compared to the
post-seg system's 3.7 FPpI. At 85%, the difference was even greater: 4.1 FPpI for the pre-seg system compared
to 2.1 FPpI for the post-seg system.

4. DISCUSSION

From examining Table 1, it can be seen that a total of eight of the features experienced a statistically significant
change in performance, with seven increasing and one decreasing. Since the segmentation algorithm has provided
sharper outlines of the regions, the increase in performance of the features describing the border agrees well with
intuition. The fact that the segmentation routine captures important information in the details of the border can
be seen in the significant performance increases of three of the seven NRL features: NRL mean, NRL area ratio,
and NRL spread. The remaining NRL features increased in performance but without statistical significance.

Additionally, the improved accuracy in the description of the masses overall shapes is evident from the
improvement of circularity, extent, eccentricity, and solidity. For example, circularity made one of the more
dramatic increases in performance, rising from 0.67 to 0.79 with a p-value of < 0.01, making it one of the better
performing features after incorporating the segmentation algorithm. This increase is not surprising because, after
the segmentation, the majority of non-mass objects should be less circular than they were previously. Overall,
the increase in the effectiveness of many of the morphological features validates the segmentation algorithm.
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Table 1. The features, AUCs before and after incorporation of the segmentation routine, and the statistical significance
of their change. The standard deviations and p-values were computed using the bootstrap sampling technique and the
percentile method.

Feature Pre-seg System AUC Post-seg System AUC p-value of Difference

Area 0.79 ± 0.02 0.82 ± 0.02 0.13

Eccentricity 0.64 ± 0.03 0.71 ± 0.02 0.02
Major Axis Length 0.72 ± 0.02 0.70 ± 0.02 0.26
Minor Axis Length 0.82 + 0.02 0.84 ± 0.02 0.23
Area of Convex Hull 0.79 ± 0.02 0.80 ± 0.02 0.32
Equivalent Diameter 0.79 ± 0.02 0.83 ± 0.02 0.13
Solidity 0.67 ± 0.03 0.77 ± 0.02 < 0.02
Extent 0.52 ± 0.02 0.76 + 0.02 0.05
Mean DOG filter Output 0.76 ± 0.02 0.70 ± 0.02 0.05
Peak DOG filter Output 0.83 ± 0.02 0.81 ± 0.02 0.25
Std dev DOG filter Output 0.81 ± 0.03 0.76 + 0.02 0.09
Circularity 0.67 ± 0.03 0.79 ± 0.02 < 0.01
Contrast 0.73 ± 0.03 0.77 ± 0.02 0.06
NRL Mean 0.65 + 0.03 0.80 ± 0.02 < 0.01
NRL Std Dev 0.64 ± 0.03 0.71 ± 0.03 0.06
NRL Entropy 0.61 + 0.03 0.63 ± 0.03 0.32
NRL Area Ratio 0.64 + 0.03 0.76 ± 0.03 < 0.01
NRL Zero Crossing 0.60 ± 0.02 0.64 ± 0.03 0.10
NRL Spread 0.66 ± 0.03 0.78 ± 0.02 < 0.01
NRL Change 0.74 ± 0.03 0.79 ± 0.02 0.11

Only one of the twenty features significantly decreased in ROC performance: mean output of the DOG filter
output. Another DOG filter-extracted feature, the standard deviation of the filter output, almost decreased
significantly with a p-value of 0.06. We feel the effectiveness of these two feature decreased due to the increased
accuracy of the object borders. Since the segmentation procedure groups pixels with similar gray values, it would
be expected that the mean and standard deviation of the DOG output would not vary as much as they did in
the previous segmentations, particularly in non-mass objects. Without the variation present, it is not surprising
that it was not as capable of separating masses from non-masses.

The FROC curve in Figure 5 indicates how the incorporation of the segmentation routine positively affected
the CAD systems performance, particularly in the key range above 80% sensitivity and below 4 FPpI. Although
the curves for the overall performance were close over the entire range of the curve, the performance of the
post-seg system on the malignant masses clearly exceeded that of 1.5 FPpI to 4 FPpI, corresponding to a range
from 75% to 90% sensitivity.

Since detecting malignant masses is more important than detecting benign masses, we are encouraged that
our system performs better on the malignant masses in the lower range of FPpI. When detecting 90% of the
malignant masses, the pre-seg system achieves 4.4 FPpI compared to the post-seg system's 3.7 FPpI, a decrease
of 16%. At 85%, the pre-seg and post-seg systems respective FPpI are 4.1 and 2.1, a decrease of 49%. At
80% sensitivity, the FPpI's for the pre- and post-seg systems are 3.3 and 1.8, respectively, a decrease of 45%.
Since it has been demonstrated that, at a constant system sensitivity, reducing the systems FPpI increases a
mammographers performance, 15 preserving a high level of sensitivity as false positives are reduced is key to the
success of a CAD system.
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Figure 5. FROC curve comparing the system performance before (black) and after (gray) incorporation of the segmen-
tation algorithm. The overall performance (i.e., masses vs. non-masses) is shown by the dotted lines; performance on
only malignant masses (i.e., malignant masses vs. non-masses) is shown by the solid lines.

5. CONCLUSION

In this study, a new algorithm to segment suspicious regions was incorporated into a mammographic mass
CAD system. The proposed segmentation algorithm is an iterative procedure that utilizes a linear discriminant
function to separate an objects interior pixels from its exterior pixels and requires only two parameters: d, the
maximum distance between neighboring pixels on each ray, and n, the allowable distance between neighboring
border pixels. The inclusion of the two constraints on the boundaries helps to minimize the influence of spurious
background structures. On average, the procedure completes in only 7.8 iterations.

The performance and importance of the segmentation routine was validated by its impact on the accuracy of
the individual mass features validates the segmentation routines performance. It was found that the segmentation
routine affected the performance of individual features in a predictable and intuitive manner; many of the features
describing the mass border increased with statistical significance. As seen in Figure 5, the segmentation routine
greatly aided the performance of the CAD system on malignant masses at a critical region of the FROC curve,
where sensitivity is greater than 80% and FPpI are less than 4. The addition of the segmentation made the
largest difference in the systems efficacy on malignant masses.

Because the borders of masses hold much of the information regarding their pathology, it is critical to
accurately measure this information. From the impact of the segmentation routine on the performance of the
individual features as well as the FROC performance of our system, we feel that the introduced segmentation
routine is a critical addition to our CAD system.
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ABSTRACT

Bi-plane correlation imaging (BCI) is a new imaging approach that utilizes angular information from a bi-plane digital
acquisition in conjunction with computer assisted detection (CAD) to reduce the degrading influence of anatomical noise in
the detection of subtle lesions in planar images. An anthropomorphic chest phantom, supplemented with added nodule
phantoms (5-13 mm at the image plane), was imaged from different posterior projections within a ±12' range by moving
the x-ray tube vertically and horizontally with respect to the detector. Each image was analyzed using a basic front-end
single-view CAD algorithm. The correlation of the suspect lesions from the PA view with those from each of the oblique
views was examined using a priori knowledge of the acquisition geometry. The correlated suspect lesions were registered
as positive. Using an optimum -3' vertical geometry and processing parameters, BCI resulted in 62.5% sensitivity, 1.5
FP/image, and 0.885 PPV. The corresponding values from the observer experiment were 56% sensitivity, 10.8 FP/image,
and 0.45 PPV, respectively. Compared to single-view CAD results, the BCI reduced sensitivity by 20%. However, the
corresponding reduction in FPs was notably higher (94%) leading to 140% improvement in the PPV. Changes in
processing parameters could result in higher PPV and lower FP/image at the expense of lower sensitivity. Similar findings
were indicated for small (5-9 mm) and large (9-13 mm) nodules, but the relative improvement was significantly higher for
smaller nodules. (The research was supported by a grant from the NIH, R2 1 CA91806.)

Keywords: Chest radiography, digital radiography, stereoscopy, lung nodules, lung cancer, computer aided detection
(CAD)

1. INTRODUCTION

Lung cancer is a leading cause of death in the US, surpassing the mortality associated with breast, prostate, colon, and
cervical cancers combined (ACS 2002). In its early stages, lung cancer is often discovered in the form of solitary lung
nodules when a chest radiograph of a patient is taken for another purpose. Many studies suggest that the probability of
localized disease, and thus patient survival, is inversely proportional to the size of a nodule at the time of diagnosis (Padilla
1997, Mori 1989). Therefore, any improvement in the poor prognosis of lung cancer relies on improving the early
detection of associated lung nodules when they are still small, and thus the probability of the spread of the disease is still
low. In chest radiographs, small cancerous nodules are difficult to detect. Even very experienced radiologists often miss
subtle lung nodules that can be detected if the image is viewed retrospectively after the disease is confirmed (Heelan 1984).
In spite of much technological advancement in chest radiography in the last four decades, there has been little or no
improvement in the detection of small lung nodules (Revesz 1977, Muhm 1983, Heelan 1984, Gavelli 1998).

There are three main factors limiting the detection of subtle lung nodules and early diagnosis of lung cancer: nodule
contrast to noise ratio (CNR), perceptual errors, and anatomical noise. The detection of lung nodules can be influenced by
their low CNR. There have been significant advancements in radiologic technology, including the development of digital
radiographic systems, that have led to significant improvements in the resolution, noise, and latitude characteristics of
thoracic images leading to improved CNR of lung lesions. Perceptual errors, at both visual and cognitive levels, are the
second obstacle contributing to the low detection rate of subtle lung nodules (Kundel 1978, Kundel 1975, Carmody 1980).
Computer assisted diagnosis (CAD) algorithms have also been developed as a method to provide a complete search of the
image data and thus minimize perceptual errors in the detection of lung nodules in chest radiographs (Giger 1988). The
third and perhaps the most significant obstacle with detrimental effects on the detection of lung nodules in chest
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radiographs is anatomical noise, the normal thoracic structures surrounding and overlaying a lesion masking its appearance
(Burgess 1997, Samei 2000, Revesz 1974, Neitzel 1998).

Several promising methods have been developed to reduce the influence of anatomical noise in thoracic images. Two such
techniques that aim to improve lung nodule detection by minimizing the appearance of ribs and other overlaying thoracic
structures are dual-energy imaging (Stewart 1990, Kido 1995) and digital tomosynthesis (Zwicker 1997, Dobbins 1998).
The former technique, with only two systems commercially available, is currently under clinical evaluation, while the latter
awaits further development and clinical implementation. Computed tomography is probably the optimal modality for
minimizing anatomical noise in chest imaging as it eliminates overlays of anatomical structures associated with projection
imaging. There has been recent excitement over the use of low-dose CT for lung cancer screening (Henschke 1999).
However, at the present, utilization of CT as a wide-spread screening method for the detection of subtle lung nodules is
controversial because of associated economic (cost and technology availability), patient care (e.g., over-treatment), and
epidemiological (e.g., patient dose) issues.

This study proposes a new image acquisition and processing approach, bi-plane correlation imaging (BCI), for improving
the detection of subtle lung nodules. In this approach, two digital images of the thorax are acquired within a short time
interval from two slightly different posterior projections (Fig. 1). The image data are then incorporated into an enhanced
CAD algorithm in which nodules are detected by examining the geometrical correlation of the detected signals in the two
views. The underlying hypothesis of the proposed approach is that the anatomical noise associated with normal anatomical
features in the thorax is the main factor limiting the detection of subtle lung lesions. Angular information is used to
minimize this limiting influence by identifying and positively reinforcing the nodule signals, which remain relatively
constant against a variation in the background structure. This approach does not promise to completely eliminate
anatomical noise (as CT does), but aims to cost-effectively reduce its influence without an increase in the patient dose.
Using correlation of signals between two views to identify "true" signals, CAD can be utilized at high sensitivity levels,
lowering the detection thresholds, without an undesirable increase in the number of false positives. The hybrid approach of
utilizing angular information in conjunction with digital acquisition and CAD addresses all three major obstacles to the
detection of subtle lung nodules discussed above. The angular information reduces the effects of anatomical noise, the
high signal-to-noise ratio of digital acquisition assures sufficient nodule contrast, and CAD incorporates a complete search.
This paper reports on a study aimed to explore the feasibility of BCI for improved early detection of subtle lung nodules
via a phantom experiment.

PA pojetion2 panto Phanto

B X-ray Tube Diaphra.r

Detector

Fig. 1: The schematic geometry for the acquisition of BCI bi-plane image pairs at 0 (PA) and-6 degrees
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2. MATERIALS AND METHODS

1. Image acquisition

This study was performed based on images acquired from an anthropomorphic chest phantom (RSD, Inc., Long Beach, CA).
The phantom was superimposed with 16 additional nodule phantoms of 8 different sizes made of Teflon emulating the
appearance of subtle tissue-equivalent lesions in chest radiographs (4-11 mm in diameter) with a physical density within a
0.95-1.1 g/cm 3 range (Samei 1997). Table 1 lists the diameter, thickness, and contrast characteristics of the nodule phantoms.
As the nodule phantoms were placed on the back of the chest phantom in PA acquisition geometry, they were magnified by
about 20% to 5-13 mm in diameter. Four small fiducial markers were also added at four comers of the phantom for verifying
the acquisition geometry. The supplemented phantom was imaged using a conventional PA geometry with a flat-panel digital
radiographic system (GE, XQ/i). The exact locations of the nodules were recorded via an additional image with the locations
of the nodules marked with fiducial markers (Fig. 2).

In addition to the PA view, by vertically adjusting the x-ray tube, the supplemented phantom was imaged using seven
additional projection orientations at -6', -40, -309 +30, +40, +60, and +120 (Fig. 1). The x-ray tube was moved between these
angular positions using a precise programmable tube mover (Fig. 3). The above acquisitions were repeated with the 16 nodule
phantoms placed in a different arrangement configuration to allow superimposition of a given nodule against various local
anatomical backgrounds. A conventional kVp (120) and standard photo-timed exposure (mAs = 5) were used for the
acquisitions. The acquisitions were repeated with the supplemented phantom rotated 90 degrees to assess the utility of BCI
with horizontal (i.e. lateral) displacement of the x-ray tube in the two projections. The images were corrected for offset and
gain non-uniformities without any additional image processing. The total of 32 projection images (8 projections x 2 nodule
configurations x 2 orientations) were stored electronically.

Table 1 illustrates the realization of the nodule phantoms in one of the PA radiographs. As evident in the illustration, the
lesions were extremely subtle and most of them were below the size considered the threshold of detectability, 10 cm, on chest
radiographs, 10 mm (Kundel 1981).

All the acquired oblique images were paired with a corresponding 0 degree/ PA image to be used for determining the optimum
acquisition geometry as described below. In the acquired image set, the relative angular separation of any oblique view from
the corresponding PA view was verified by correlating the coordinates of the four fixed fiducial markers placed at the comers
of the image area. The results showed excellent geometrical accuracy, with sub-mm precision for geometrical correlation of
anatomical features. For each image, a truth file was also generated from the known location of the nodule phantoms to be
used for evaluating the performance of the CAD algorithm described below.

Table 1: The characteristics of the nodule phantoms. The diameters were 20% higher in the imaging plane because of
magnification. The estimated peak contrasts were determined from the maximum thickness of the phantoms, an assumed
scatter-to-primary ratio of 0. 68, and an effective linear attenuation coefficient of 0. 045126 mm-'as defined in Samei et al.
(Samei 1997) and estimated for a 0. 5 mm thick CsI detector using the xSpect x-ray simulation routine.

Diameter (mm) 3.9 5.5 5.0 7.8 7.0 9.3 8.4 11.0
Maximumthicns 1.52 2.12 2.36 3.00 3.35 3.56 3.95 4.27thickness (ram)
Estimated peak 4.1 5.7 6.3 8.1 9.0 9.6 10.6 11.5
contrast, dE/E (%)
Emulated peak
physical density 0.95 0.95 1.1 0.95 1.1 0.95 1.1 0.95
(g/cm 3)

Nodule appearance
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Fig. 2. A PA chest image with the location of the added Fig. 3: The tube mover used to acquire
the nodules marked with fiducial markers bi-plane data.

2. Single-view CAD

A single-view CAD algorithm has been under development at our research laboratory. The acquired phantom images were
processed by the algorithm and the results were used as input to the BCI scheme described in the next section.

The CAD algorithm consisted of four stages: A) image preprocessing, B) filtration, C) suspicious region localization, D)
feature extraction, and D) classification/false positive reduction. At the image preprocessing stage, the images were first
inverted and then converted to a logarithmic scale. The lung fields were segmented via hand-drawn outlines, a
segmentation step expected to be automated in the next version of the algorithm. The image preprocessing stage also
included a background regularization process via unsharp-masking (USM) or local histogram equalization (L-E)
(Gonzalez 1993). USM suppresses low-frequency background information while emphasizing the high-frequency content
of an image. Subtracting a low-pass filtered version of the original image enhances the high-frequency content and
corrects for non-uniformities in the background, therefore potentially raising the detectability of the nodules. Alternatively,
LI-BE is able to accentuate local details while preserving the overall, or low-frequency, structure of the image, leading to
increased local contrast. The USM processing was applied according to I(x,y) = A. O(x,y)-L[O(x,y)], where I(x,y) is the
new image, O(x,y) is the original image, A is a scalar in [0, 1], and L is a low-pass rectangular average filtering operator. In
the LHE process, each pixel in the original image was transformed into a new pixel by I(x,y) = A(x,y).[O(x,y)-
m(x,y)]+m(x,y), whereA(x,y) = kM/lfx,y), Mrepresents the global mean of the image, k is a scalar in [0, 11, and o(x,y) and
m(x,y) are the local standard deviation and local mean of pixels in a kernel/window around (x, y). In this study, the kernel
sizes for this operator were varied between 28 and 52 mm for a fixed A = k = 0.5.

After pre-processing, the images were filtered for enhancing nodule-like features within the images. Since it has been
demonstrated that lung nodules generally follow a Gaussian-like profile (Samei 1997), a Difference Of Gaussian (DOG)
filter was used (Zheng 1995). Two DOG filters were utilized with two different combinations of the standard deviation
widths of the two defining Gaussian components, 8/4 or 8/2 mm. These particular combinations were selected based on an
iterative empirical approach for best performance. The kernel size of the DOG and the kernel size of the preprocessor were
always chosen to be equal. The DOG filter was applied using the normalized cross-correlation (NCC) method (Gonzalez
1993, Carreira 1998, Penedo 1998). Unlike conventional cross-correlation, NCC is amplitude independent, and thus.
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suitable to the widely varying background of chest images. The output of the filtration was an image with values ranging
between -1 and +1, with the extremes corresponding to the perfect mismatch or match of the original image to the targeted
DOG profile, respectively.

The filtered images were further processed to identify suspicious nodule locations via a multi-level thresholding procedure.
In this procedure, regions were identified at eleven gray level thresholds. As the threshold levels progress, some of the
regions would grow and merge with their neighbors. The final set of suspicious regions was determined by extracting the
suspicious regions at the threshold level before they merged with another region.

Finally, from each of the suspicious regions, twelve features were extracted. These features included area, eccentricity,
major axis length, minor axis length, convex area (the area of the convex hull), equivalent diameter (diameter of the circle
that has an area equal to that of the region), orientation, the filled region (the area of the region including internal voids),
Euler number (the number of objects in the region minus the number of holes in those objects), solidity (the area of the
region divided by area of the convex hull), and extent (the area of the region divided by area of the bounding box - smallest
enclosing rectangle). To classify the suspicious regions as being nodules or nonnodules, a multistep linear classifier was
employed. Specifically, each pair of extracted features was combined via Fisher's linear discriminant (Nadler 1993), and
classification decisions were made. The thresholds on the classification outputs were empirically determined so as to
minimize the number of true positives eliminated. Once each pair of features was compared and classification decisions
were made, all decisions were logically "ANDed" to make the final classification decision. Round-robin training and
testing was employed in the classification procedure.

The ground truth was specified by binary images that indicated the location and sizes of the true lesions in the images. A
nodule was counted as being "hit" when any part of the suspicious region fell within 5 mm of the centroid of the true
lesion.

Fig. 4: A PA (left) and -3' oblique (right) radiograph of the chest phantom. The fiducial markers mark the center of true
lesions, while the bright areas are suspect lesions identified by single-view. In single-view CAD, a TP is registered if any
area of the CAD "island" is within a 5 mm radius of the true lesion. In the BCI scheme, a TP is registered when a TP in
the PA view coincides/correlates with a suspect lesion in the oblique view based on the known angular separation of the
two views. If a FP in the PA view correlates with a suspect lesion (true or false) in the other view, the suspect lesion is
considered a FP in the BCI scheme.
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3. BCI detection scheme

The single-view CAD algorithm described above was supplemented with a hi-plane correlation routine. In BCI, the
geometrical correlation of the detected signals in the two views of a hi-plane image pair data is examined in order to detect
subtle lung nodules with a high-sensitivity while minimizing the number of false-positives by applying a geometrical
correlation rule. In the routine, the PA image was used as the reference image. For each suspected region in the PA image,
the known angular separation between the PA and an oblique image was used to locate the possible location where the
geometrically-shifted image of the candidate nodule might expected to appear in the oblique view depending on nodule's
location within the thoracic cavity (Fig. 4).

To take into account the shift in the location of the suspect regions due to overlapping thoracic structure, a margin
parameter defined a degree of tolerance from the perfect geometrical correlation between the two views in the horizontal
and vertical directions. The resultant rectangular mask had a width equal to twice the margin size, and a length equal to
maximum possible displacement based on angular separation plus the margin size. If a suspect region was identified
within the mask, the original suspect region in the PA view was scored as positive. If more than one suspect region was
found within the mask, only one of them was counted. A true-positive was indicated when a correlated suspect region pair
corresponded to a true-positive in the PA view. Otherwise the correlated pair was registered as false-positive.

Additional correlation rules were also applied based on the closeness in the area and the eccentricity of suspect lesion pairs
calculated from an area correlation index or an eccentricity correlation index defined as 2IApA-AobII/(ApA+Aob1) or 2IXpA-
XobII/(XPA+Xobl) where A and X are the area and eccentricity, respectively. A pair of suspect lesions was registered as FP if
their associated indices fell outside of specific thresholds.

Table 2: Performance of the single-view CAD as a function ofprocessing parameters averaged over all the acquired
images.

DOG filter Pre-processing Preprocessing Sensitivity FP PPV
size method kernel size, mm (%)

28 76.76 100.4 0.109
None 36 74.22 56.0 0.175

44 72.46 32.1 0.266
28 84.57 20.3 0.400

8/4 mm LHE 36 80.08 23.7 0.351
44 77.15 23.4 0.345
28 84.18 64.6 0.172

USM 36 78.71 38.0 0.249
44 75.78 20.2 0.375
28 85.55 117.9 0.104

None 36 82.03 80.4 0.140
44 81.64 56.4 0.188
28 90.82 48.6 0.230

8/2 mm LHE 36 88.48 40.2 0.261
44 84.96 36.7 0.271
28 90.62 85.2 0.145

USM 36 86.13 69.1 0.166
44 83.98 52.1 0.205

4. BCI evaluation

The acquired phantom images were processed using the CAD and BCI processing schemes described above. Each oblique
view projection image was paired with its corresponding PA radiograph. The results were analyzed to find the best
processing and acquisition parameters for optimum performance. The independent parameters were the following:
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Fig. 5: Variation in percent correct (sensitivity), false positive rate, and PPV of BCI In order to identify the
(left column) and of BCI compared to single-view CAD (BCI/CAD ratio, right optimum set of processing
column) as a function of vertical displacement angle and pre-processing kernel size parameters, the figure of merit
(LHE pre-processing, 8/4 mm DOG) (no area or eccentricity correlation rule).
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Fig. 7: Variation in percent correct (sensitivity), false positive rate, and PPV of BCI and the acquisition angle. The
(left column) and of BCI compared to single-view CAD (BCI/CAD ratio, right results further suggest that a
column) as afunction of vertical displacement angle and correlation area margin in kernel size of 44 mm provides
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Using the optimum geometry (0/-3' vertical displacement) and processing parameters, BCI results in 62.5% sensitivity, 1.5
FP/image, and 0.885 PPV. The corresponding values from the observer experiment were 56%, 10.8, and 0.45,
respectively. Compared to single-view CAD results, the BCI reduced sensitivity by 20%. However, the corresponding
reduction in FPs was notably higher (94%) leading to 140% improvement in the PPV. Adjustment in the processing
parameters could yield higher sensitivity at the expense of higher FPs.

4. DISCUSSION

Currently, no radiologic screening program exists for early detection of lung cancer. Early detection presently relies on
chest radiography examinations performed on asymptomatic patients for other diagnostic purposes. There have been
studies that favor using chest radiography as a screening tool (Shimizu 1992, Brett 1969). However, the usefulness of such
a screening program for lung cancer has been questioned based upon its ineffectiveness either in diagnosis (Gurney 1995)
or in changing the mortality rate once the cancer is diagnosed (Fontana 1991). If lung nodules could be reliably detected in
earlier stages of lung cancer, a screening program could be justified. Apart from low-dose CT, which is currently under
investigation, current radiologic technology is unable to either visually or computationally (i.e., using CAD) image/detect
lung nodules at a sufficiently early stage without generating a large number of false positives. The percentage of false-
positive diagnoses unfavorably affects the predictive value of a screening program, especially when the prevalence of the
disease is low (Kundel 1981). CT can surpass many of the limitation of chest radiography in imaging lung cancer
(Henschke 1999). However, its utilization as a screening method raises economical (cost and technology availability),
patient care (e.g., over-treatment), and epidemiological (e.g., patient dose) issues.

BCI is a new imaging technique that has not been investigated in the past. The phantom-based findings reported in this
paper, the first public report of the technique, suggest significant potential of BCI to surpass the fundamental anatomical
noise limitations of chest radiographic imaging and chest CAD and to improve the early detection of subtle lung nodules.
A more sensitive and specific diagnostic approach for smaller lesions (4-11 mm diameter unmagnified size in this study),
BCI has the potential to change the current state of practice, perhaps leading to a preventive lung cancer screening program
for high-risk populations. The cost associated with the technology is minimal, and thus it can be implemented cost-
effectively at doses comparable to chest radiography.

These findings of this study require further important validations. An open issue is the sensitivity of the BCI performance
to the initial performance level of the single-view CAD algorithm. We intend to test the BCI scheme using different CAD
algorithms, algorithms with more aggressive FP reduction strategies, and an iteratively combined dual-view CAD scheme.
In terms of acquisition, plans are underway to assess the sensitivity of the BCI performance to exposure, potentially
reducing the total exposure to that of a single PA chest exam. Finally, the performance of the technique should be
measured on human subjects with confirmed lung nodules, with additional strategies to minimize possible motion artifacts.

Table 3: The optimal performance of the BCI for lesions within various size ranges for vertical and horizontal
displacement of the x-ray tube. The vertical displacement images were processed with no preprocessing, 44 mm kernel
size, and 8/4 mm DOG. The horizontal displacement images were processed with USMpre-processing, 44 mm kernel size,
and 8/4 mm DOG.

0/-3* Vertical Displacement 0/+6' Horizontal Displacement
5-13 mm 5-9 mm 9-13 mm 5-13 mm 5-9 mm 9-13 mm

Margin 4mm 6nmi 4mm 6mm 4mm 6mm 4nun 6mm 4mm 6mm 4mm 6mm
BCI PC 62.5% 65.6% 62.5% 68.8% 62.5% 62.5% 62.5% 68.8% 68.8% 81.3% 56.3% 56.3%
BCI FP 1.5 2.0 1.5 2.0 1.5 2.0 2.5 4.5 2.5 4.5 2.5 4.5
BCI PPV 0.885 0.867 0.833 0.818 0.786 0.750 0.802 0.708 0.691 0.591 0.646 0.500
PCr 0.801 0.840 0.929 1.000 0.708 0.708 0.798 0.878 0.786 0.929 0.817 0.817
FPr 0.058 0.077 0.058 0.077 0.058 0.077 0.108 0.191 0.108 0.191 0.108 0.191
PPVr 2.404 2.350 4.322 4.250 3.149 2.959 2.319 2.038 3.014 2.565 3.459 2.630
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The purpose of this study was to develop a knowledge-based scheme for the detection of masses on
digitized screening mammograms. The computer-assisted detection (CAD) scheme utilizes a
knowledge databank of mammographic regions of interest (ROIs) with known ground truth. Each
ROI in the databank serves as a template. The CAD system follows a template matching approach
with mutual information as the similarity metric to determine if a query mammographic ROI
depicts a true mass. Based on their information content, all similar ROls in the databank are
retrieved and rank-ordered. Then, a decision index is calculated based on the query's best matches.
The decision index effectively combines the similarity indices and ground truth of the best-matched
templates into a prediction regarding the presence of a mass in the query mammographic ROT. The
system was developed and evaluated using a database of 1465 ROls extracted from the Digital
Database for Screening Mammography. There were 809 ROIs with confirmed masses (455 malig-
nant and 354 benign) and 656 normal ROls. CAD performance was assessed using a leave-one-out
sampling scheme and Receiver Operating Characteristics analysis. Depending on the formulation of
the decision index, CAD performance as high as A_ = 0.87± 0.01 was achieved. The CAD detection
rate was consistent for both malignant and benign masses. In addition, the impact of certain imple-
mentation parameters on the detection accuracy and speed of the proposed CAD scheme was
studied in more detail. © 2003 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1589494]

Key words: mammography, computer-assisted detection (CAD), knowledge-based, mutual
information, receiver-operating characteristic (ROC)

I. INTRODUCTION false-positive rate in the detection of breast masses. The im-
pact of false-positive CAD cues on the recall rate of mam-

Breast cancer is one of the most devastating and deadly dis- mograms is under investigation. 5' 8 Generally, it is assumed
eases for women.' While there are many exciting new tech- that the radiologists will be able to discard easily most of the
niques on the horizon, for the time being mammography re- false-positive cues. However, a recent study has challenged
mains the screening test in the battle against breast cancer. this belief.11 The study also showed that low-performing
Patients with early-detected malignancies have a signifi- CAD tools degrade radiologists' performance in noncued ar-
cantly lower mortality rate.2'3 Unfortunately, it is reported eas. Therefore, it is recommended that a cueing CAD tool
that up to 30% of breast lesions go undetected in screening should be used by an experienced interpreter to effectively
mammograms4- 6 and up to 2/3 of those lesions are visible in process all cues. 10 However, the medical and legal implica-
retrospect. 7 Breast masses comprise a significant portion of tions of dismissing CAD cues are currently unknown.' 0 Con-
missed cancers. 4' 5 The clinical significance of early diagnosis sequently, CAD research efforts in mammography are ongo-
and the difficulty of the diagnostic task have generated a ing.
tremendous interest in developing computer-assisted detec- Thus far, the overwhelming majority of CAD techniques
tion (CAD) schemes for mammographic interpretation. Sev- follow a two-step approach (e.g., Refs. 9, 12-23). Initially,
eral studies have demonstrated that CAD technology has a traditional image processing is performed to identify suspi-
positive impact on early breast cancer detection. 5' 7' 8 How- cious mammographic regions. Subsequently, morphological
ever, there are still unresolved issues related to the clinical and/or textural features are automatically extracted from
role of CAD in mammography. For example, the CAD de- these regions. The features are merged with linear classifiers
tection accuracy is reportedly lower for masses than for or artificial intelligence techniques to further refine the de-
calcifications. 9"10 Since high sensitivity is essential in screen- tection and often the diagnosis (benign versus malignant) of
ing mammography, CAD is often compromised by a higher potential abnormalities. The suspicious mammographic re-
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gions detected by the CAD system serve as cues to the radi- that if two mammographic regions depict similar structures,
ologists. Commercially available products are designed to they should contain relevant diagnostic information for each
operate as black boxes that provide diagnostic cues but not other. Therefore, by measuring their MI we can potentially
comprehensible decision models. In addition, some research- quantify their diagnostic similarity. Furthermore, the MI is
ers have developed mathematical models to describe the sta- calculated directly from the images without any preprocess-
tistical nature of mammograms.24' 25 Such models could be ing. By using MI as a global similarity metric, we avoid
potentially extended to perform as CAD tools. issues related to image segmentation, feature extraction, and

The purpose of this study is to develop a knowledge- feature selection that are typically associated with feature-
based (KB) CAD scheme for the detection of breast masses based similarity metrics or feature-based CAD schemes.
in digitized mammograms. Generally, knowledge-based
CAD (KB-CAD) systems aim to provide evidence-based de-
cision support using a knowledge databank. Much like a II. MATERIALS AND METHODS
physician relates a present case to those seen in the past, a A. The image database
KB system relates a new case to similar cases stored in its
knowledge databank. Based on the similar cases, a diagnosis The CAD system was developed and evaluated using the
is assigned to the new case by analogy or by copying the Digital Database for Screening Mammography (DDSM) that
answer if the match is close enough. The main benefits of was collected at the University of South Florida under the
using KB-CAD systems are the following: (1) KB-CAD sys- DOD Breast Cancer Research Program Grant No.
tems take full advantage of growing data libraries without DAMD17-94-J-4015. 31 DDSM is intended as a benchmark
further re-training of the CAD system and, (2) they can be database for CAD tools on screening mammograms. The da-
interactive allowing physicians to formulate their own ques- tabase includes normal, cancer, and benign cases. A DDSM
tions and get interpretable answers. mammogram is considered normal if no further evaluation

The computational demands of maintaining, indexing, and was required and the patient had a normal screening exam at
querying a large knowledge databank have limited the appli- least four years later. A cancer case is a screening mammo-
cation of these tools in mammography. Furthermore, defining gram with at least one biopsy-proven malignancy. A benign
similarity between two images is nontrivial. There is not a case is a screening mammogram with a suspicious finding
single similarity metric that is known to produce the best that was determined to be benign by pathology or additional
results in all applications. Common practice is to select di- imaging.
agnostically important features and feature-based distance DDSM includes three volumes, each containing mammo-
metrics to determine similarity. Case-based reasoning (CBR) grams digitized with a different digitizer (LUMISYS, HOW-
is a typical example of a KB system and it has been success- TEK, and DBA). Each DDSM screening exam consists of
fully applied for mammographic diagnosis based on two images for each breast (standard craniocaudal and me-
radiologist-extracted BIRADS findings. 26' 27 In addition, diolateral oblique views). Our study focused on the DDSM
Chang et al. showed the feasibility of using a KB-CAD sys- mammograms digitized using the LUMISYS scanner. Ini-
tem for the detection of mammographic masses. 28 Their sys- tially, these mammograms were downloaded and archived.
tem employed a feature-based similarity metric that required From those, all mammograms with annotated masses were
segmentation of the suspected masses, selected. Specifically, all malignant masses present in the sets

In contrast, our proposed KB-CAD scheme follows an "cancer_02," "cancer_05," "cancer_09," and "cancer_15"
image retrieval approach that is not feature-based but uses were identified. Similarly, all benign masses present in the
template matching with a global similarity metric. Template sets "benign_01," "benign_04," "benign_06," "benign_13,"
matching requires comparison of a given image with a tem- and "benign_14" were identified. There were 260 studies
plate image. Each mammographic case stored in the knowl- with malignant masses and 146 studies with benign masses.
edge databank serves as a template. Given a query mammo- Some masses were visible in one mammographic view only.
graphic region, the KB-CAD scheme retrieves similar cases The DDSM includes information describing the location
from its knowledge databank. The focus of this study is to of the masses. 512 X 512 pixel regions of interest (ROIs) cen-
investigate mutual information (MI) as a potential similarity tered on the known location of each annotated mass were
metric for knowledge-based detection of masses in screening extracted. In addition, 512X 512 pixel ROIs depicting normal
mammograms. tissue were also extracted. The normal ROIs were extracted

MI is a fundamental concept in information theory.29 It is from the sets "normal_09" and "normal_10." The two sets
defined in terms of two objects (i.e., images) and it measures included 82 patients with normal screening mammograms.
how much one object can explain the other. Thus, MI cap- Two 512X512 pixel ROIs were randomly chosen from each
tures the similarity or the amount of relevant information view per breast. Thus, eight ROIs were extracted from each
between two objects.29 In medical imaging, MI has been a DDSM patient with a normal screening exam. There were
very effective similarity metric for image registration tasks. 30  1465 ROIs in total; 455 ROls depicting a biopsy-proven ma-
The basic idea is that when two images are properly aligned, lignant mass, 354 ROls with a benign mass, and the remain-
their MI is maximal. Our study aims to evaluate if MI can ing 656 ROls were normal. To facilitate detailed analysis
serve as a similarity metric in a template-matching scheme according to the difficulty level of the detection task, all
for the detection of mammographic masses. We hypothesize extracted ROIs were furthered indexed according to the den-
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provides for Y and vice versa. Therefore, the MI can be
knowledge thought as an intensity-based measure of how much two im-

mnamrmographic region dat ages are alike. In the template-matching context, the MI in-
creases when the query image X and the template image Y

emplatcn depict similar structures. Then, the pixel value in image X is
agt a good predictor of the pixel value at the corresponding lo-

cation in image Y.
Theoretically, MI is a more effective and robust similarity

metric than traditional correlation.32 Correlation techniques
7 d~eision assume a linear relationship between the intensity values in

algorithm >the two images. MI measures general dependence without
"making any a priori assumptions.

The MI estimation of two mammographic ROIs requires
FiG. 1. Overview of the KB-CAD scheme, computation of the joint and marginal pdfs as shown in Eq.

(1). There are two published methods for the task: (1) Parzen

sity rating of their corresponding mammogram. The ACR windows,33 and (2) the histogram approach.34 We followed
the histogram approach since it is quick and easy to imple-

density rating is part of the associated patient information ment. Time efficiency is very important for a knowledge-
that is provided in the DDSM database. based CAD system.

According to the histogram method, a pdf is approxi-
B. Overview of the CAD scheme mated using a histogram. For each histogram bin, the prob-

Figure 1 highlights the three critical components of our ability is estimated by counting the number of pixels that fall

KB-CAD scheme: (1) the knowledge databank, (2) the tem- into a particular bin and dividing that number by the total
plate matching algorithm, and (3) the knowledge-based de- number of pixels. Then, the MI of two images X and Y can

cision algorithm. The knowledge databank contains mammo- be computed according to Eq. (1).

graphic ROls that depict masses of known truth or normal The number of bins selected for histogram approximation
tissue. Each ROI stored in the databank serves as a template. is a critical issue. 35 More bins allow for more detailed rep-
A query suspicious mammographic region is compared to the resentation of the pdfs. However, these details may be noth-

stored templates using the template-matching algorithm. ing more than noise caused by the small sample size in each
Based on their information content, all similar templates in bin. The potential estimation error can substantially alter the
the databank are retrieved. A decision algorithm effectively results of a study.36 Since the DDSM images considered in

combines the similarity indices and known truth of the re- our study are 12 bit images, the 4096X4096 2D histogram

trieved templates into a prediction regarding the presence of required for the estimation of the joint pdf of two mammo-
a mass in the suspicious query mammographic region. graphic ROls will be very sparse leading to serious MI esti-

mation errors. Following typical practices of image registra-

C. The template-matching algorithm tion applications, the pdfs were estimated using a reduced
number of 256 equal-sized intensity bins for the histogram

This section describes the algorithm employed in the approximation technique. Furthermore, since the distribution
study to measure the similarity between a query mammo- for the pixel values can vary substantially among ROIs we
graphic region and a template ROI stored in the knowledge applied the following rules. For each ROI, the mean j and
databank. The algorithm utilizes mutual information (MI), a standard deviation o- of the ROI pixel values were calculated.
similarity index borrowed from information theory.29  Then, the interval [/a-2o-,/t+2o-] was divided into the pre-

Mutual information is a measure of general interdepen- selected number of equal segments (i.e., 256). Any rare pixel
dence between two random variables x and y.29 The MI con- values falling outside the predetermined interval were as-
cept can be easily extended to images. Given two images X signed to the extreme left or right bins when calculating the
and Y, their MI I(X; Y) is expressed as histograms. The above rules were followed consistently for

Px(xY) (1 all RO1s.
I(X; Y) = E PXr(X,y)log2 pXYX ) ,(1)

where Pxy(x,y) is the joint probability density function
(pdf) of the two images based on their corresponding pixel
values. 29 Equation (1) assumes that the image pixel values D. The knowledge-based decision index

are samples of two random variables x and y, respectively. The knowledge-based decision index was computed using
Px(x) and Py(y) are the marginal pdfs. The basic idea is the level of similarity and the ground truth of the best-
that when two images are similar, pixels with a certain inten- matched templates. Two experiments were performed to de-
sity value in one image should correspond to a more clus- termine the most effective way to use the CAD system as a
tered distribution of the intensity values in the other image. 30  computer aid for the detection of mammographic masses. In
The more the two images are alike, the more information X the first experiment, the knowledge databank included only
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TABLE I. ROC performance of the CAD scheme for two decision indices (D1 ,D 2) and for varying number of
the top matches considered (k= 1, 10, 50, 100, 200, 400, ALL). The MI calculations were based on 256
histogram bins and the full resolution 512X512 ROIs.

1 10 50 100 200 400 ALL

D, 0.71±0.01 0.71±0.01 0.71±0.01 0.72±0.01 0.73±0.01 0.74±0.01 0.75±0.01
D 2  0.71±0.01 0.79±0.01 0.84±0.01 0.85±0.01 0.85±0.01 0.86±0.01 0.87±0.01

mammographic ROIs that contained a mass. In the second F. Influence of implementation parameters
experiment, the knowledge databank included both normal In a knowledge-based system, comparing a query case
and mass ROIs. with every archived case can be computationally expensive.

Experiment 1: Given a query mammographic ROI Qj, a This is certainly a concern with image databases and global
decision index was calculated based on the MI between the similarity metrics such as the mutual information. One way
query ROI and each known mass Min the knowledge da- to reduce the computation time is by reducing the number of
tabank. The decision index DI (Qi) was the average MI of histogram bins employed for the MI estimation. We repeated
the k best mass matches: the previous experiments estimating the MI using 64 and 128

1k histogram bins to evaluate the impact of this implementation
D 1I I MI(Qi,Mj). (2) parameter on the overall performance of the CAD scheme. In

D = k Mj= 1  addition, we studied the effect of image sub-sampling. Since

a knowledge-based CAD system requires individual com-
Theoretically, a query ROI depicting a mass should match parisons of the query ROI with all stored ROIs, it can be
better with the databank of mass ROls than a query ROI computationally more effective if the comparisons are per-
depicting normal breast tissue, thus resulting in a higher formed on reduced-resolution ROIs. We repeated the above-
Dl(Qi). mentioned experiments with sub-sampled ROls (256X256,

Experiment 2: Given a query mammographic ROI Qi, a 128X128, and 64x64) to determine if the CAD detection
decision index D 2(Qi) was calculated as the difference of rate degrades for sparsely sampled ROIs.
two terms. The first term measures the average MI between
the query ROI and its k best mass matches Mj. Similarly, the
second term measures the average MI between the query II. RESULTS
ROI and its k best normal Nj matches, The experimental results are presented in two sections.

1 k 1 k Each section addresses an important issue: (1) oyerall ROC

D2(Qi)= IE MT(QiMj)- IE MI(QiNj). (3) performance, (2) influence of the implementation parameters
D Q =- Mj=M on performance and time efficiency of the proposed CAD

scheme.
Theoretically, a query ROI depicting a mass should have a A. Overall ROC performance of the CAD scheme
higher D 2(Qi).

"No particular trend was observed in obtaining higher MI
values with template ROIs extracted from the same mammo-

E. Performance evaluation gram as the query ROT. Therefore, the overall detection per-
formance of the KB-CAD scheme was analyzed on a per

The diagnostic performance of the CAD system was ROI basis, not on a per-case basis. Table I shows the perfor-
evaluated using a leave-one-out sampling scheme. 37 Given mance of the CAD system as measured by the ROC area
the database of 1465 mammographic ROls, each ROI was index (A.) for each one of the decision indices D 1 , D 2 and
excluded once to serve as a query case. In experiment 1, the for varying number of the top matches considered (parameter
remaining mass cases were used to establish the knowledge k).
databank. In experiment 2, the remaining 1464 cases were Several observations can be made based on Table I. The
used to establish the databank. The experiments were re- performance of the KB-CAD scheme varied substantially de-
peated until every ROI served as a query ROT. The calcu- pending on the decision algorithm. Overall, the CAD system
lated decision indices D1 and D 2 were analyzed based on had a significantly better ROC performance when the deci-
Receiver Operating Characteristic (ROC) analysis methodol- sion index was calculated using the knowledge databank that
ogy. The ROCKIT software package developed by Metz includes both mass and normal templates (D 2). Furthermore,
et al. (available at www-radiology.uchicago.edu/krl/ CAD performance improved as more matched cases were
toppagel 1.htm) was used to fit ROC curves to the two deci- considered in the calculation of the decision index D 2 . The
sion indices implemented in this study. For both indices, CAD system achieved its best ROC performance (A,= 0.87
ROC performance was estimated for varying values of the -_ 0.01) when all archived cases were included in the calcu-
top matches (parameter k) considered. lation of D 2 . However, when the detection decision was
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.. . ,,TABLE III. Effect of mammographic density on the ROC performance of the
- KB-CAD scheme.

5 Q8 No. of No. of
"" Mammographic density mass ROIs normal ROIs A,

S/(16 1: fatty breast 193 96 0.98±0.01

> 2: fibroglandular breast 362 272 0.91±0.01
"" 3: heterogeneous breast 195 208 0.87±0.02

4: dense breast 59 80 0.64±0.05

o 0.2 1

0 ' Since mass detection is more challenging in dense breasts,
0 .2 A4 (Q6 0.8 1 we also analyzed the CAD performance for each subgroup of

False Positive Fraictn ROIs based on the DDSM density rating of the mammogram
from which they were extracted. Table III summarizes those

FIG. 2. ROC curves of the KB-CAD scheme based on the two decision results. Table III shows that the ROC area varied signifi-
algorithms (DI and D2). The calculation of the two decision indices in- cantly, starting from almost perfect performance in fatty
eludes all archived templates. breasts (Az=0.98±0.01) and progressively degrading in fi-

broglandular (A,= 0.91± 0.01) and heterogeneous breasts
(A,= 0.87±-0.02). The CAD performance was dramatically

based only on the best mass matches (DI), the ROC area lower for dense mammograms (A_= 0.64± 0.05) than for all
index was statistically significantly lower (A,= 0.75±0.01) remaining categories. Since the ROIs extracted from dense
but substantially less dependent on the parameter k. Figure 2 mammograms comprised only 10% (139/1465) of the whole
shows the corresponding ROC curves of the CAD system data set, it is unclear if the inferior performance can be par-
based on the two decision algorithms (DI and D2) for k tially contributed to the lower representation of dense ROIs
= ALL. As the figure shows the best performing knowledge- in the knowledge databank.
based CAD scheme achieved 90% sensitivity while safely )
eliminating 65% of the normal regions. B. Influence of implementation parameters on CAD

The best performing CAD scheme was analyzed in more performance
detail. First, detection accuracy was evaluated separately for
malignant and benign masses. The CAD scheme showed ro- Tbe VadVdmntaeteipc ftoipemalinan an beign asss. he AD shem shwedro- mentation parameters on the overall ROC area index of the
bust performance among the two groups of masses: mentation parameter on the ndex of he
A,(malignant masses versus normal)=0.88±0.01 and KB-CAD scheme. The first parameter is the number ofthis-
A.(benign masses versus normal)=0.86±0.01. A small sub- togram bins used in the calculation of the MI between two
set of mammographic ROIs (57 out of 809 mass regions) ROIs. The second parameter is the sub-sampling factor of the
contained both a mass and microcalcifications. Significant mammographic regions. Table IV shows the impact of both
degradation in ROC performance was observed for this sub- parameters on decision index D1. Table V corresponds to
set (A,= 0.80± 0.04) compared to the remaining set of mass decision index D2 . The calculation of both decision indices
regions (A =0.89±0.01). was based on all archived cases (kd=ALL).

To assess the effect of case difficulty, the best performing Two important conclusions can be drawn from the above-
CAD scheme was further analyzed for each subgroup of mentioned tables. First, when estimating the MI between two
masses according to their DDSM subtlety rating. The mass ROIs, the number of histogram bins should be selected care-
subtlety rating is not a BI-RADS standard. It is simply a fully. CAD performance can be significantly degraded as the
subjective impression of the DDSM radiologist on the number of histogram bins increases. The degradation is par-
subtlety of the lesion. A higher subtlety rating indicates a ticularly strong with the coarser ROIs; using a large number
more obvious lesion. Table II shows that the overall ROC of bins introduces serious estimation errors due to the
area index of the CAD tool is fairly robust regardless of the smaller number of pixels available in each "bin. However,
reported subtlety of the mass ROIs. The only exception is the there is no such concern with the full-resolution ROIs. Sec-
subgroup of masses with Subtlety rating 2. For this sub-
group, the KB-CAD had a statistically significantly lower TABLE IV. Effect of image sub-sampling (256X256,128X128,64X64) and
ROC performance than the other subgroups. the number of histogram bins (64,128,256) on the overall ROC area index of

the KB-CAD scheme for decision index DI. The full resolution ROIs are
512X512. The reduced size ROIs were created by sub-sampling accordingly
the full resolution ROIs.

TABLE II. Effect of mass subtlety rating on the overall ROC performance of
the KB-CAD scheme. 512X512 256X256 128X128 64X64

Subtlety=l Subtlety=2 Subtlety=3 Subtlety=4 Subtlety=5 64 bins 0.75±0.01 0.75±0.01 0.75-±0.01 0.72±0.01
128 bins 0.75±0.01 0.75-±0.01 0.73±0.01 0.59±0.01

ROC AZ 0.87±0.04 0.79±0.03 0.86-±0.02 0.85±0.01 0.89±0.01 256 bins 0.75±0.01 0.73±0.01 0.71±0.01 0.51±0.01
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TABLE V. Effect of image sub-sampling (256X256, 128X 128, 64X64) and other data sets and larger populations of screened women.
the number of histogram bins (64,128,256) on the overall ROC area index of Furthermore, since the proposed CAD capitalizes on con-
the KB-CAD scheme for decision index D2 . The full resolution ROIs are
512X 512. The reduced size ROIs were created by sub-sampling accordingly tinuously depositing cases in the databank, it is important to
the full resolution ROIs. assess the impact of the digitization process. The present

study was based on DDSM cases digitized with the same
512X512 256X256 128x 128 64X64 digitizer. Studies are under way evaluating how well the

64 bins 0.87±0.01 0.87t0.01 0.87±0.01 0.87±0.01 CAD system can generalize to other DDSM cases digitized
128 bins 0.87±0.01 0.87±0.01 0.86±0.01 0.84±0.01 using a different digitizer.
256 bins 0.87±0.01 0.86±0.01 0.84±0.01 0.81±0.01 The reported CAD performance was fairly robust regard-

less of the mass subtlety rating. However, analysis according
to breast density showed that CAD performance degrades

ond, decision index D2 appears to be more robust to the substantially in dense breasts as it is clinically known. This
above effects. D2 is basically the difference of two terms. If issue needs investigation due to the lower representation of
both terms are over- or underestimated, their difference can dense mammograms in the dataset. It is possible that aug-
still reasonably maintain its rd1ative discriminant power. Our menting the knowledge databank with more examples from
experimental results support this hypothesis. dense mammograms will improve the CAD performance.

The above-mentioned experiments were performed on a Another potentially promising strategy is to design the KB-
Sun Sparc Ultra-80 workstation with 4 450 MHz processors CAD scheme so that each query ROI is only compared to
(Sun Microsystems, Mountain View, CA). Using a single archived ROIs that were extracted from mammograms with
processor, the time requirements to calculate the mutual in- similar density rating as the query ROI. We acknowledge
formation between two mammographic ROIs ranged from that although indexing the ROIs according to their mammo-
0.01 to 0.21 s depending on the ROI size and number of graphic density may improve the overall performance of the
histogram bins selected for the MI estimation. Therefore, the knowledge-based scheme during the development stage, it
proposed knowledge-based CAD scheme can be easily trans- may also introduce a serious bias. Observer variability in the
lated into a real-time CAD system. It takes 2.5 min to com- reporting of BI-RADS findings is a well-documented issue.
pare a mammographic region with 1000 archived cases. The Specifically, a study indicated that the overall agreement
above-mentioned calculation assumes 512 X 512 ROIs and 64 across observers for the BI-RADS reporting of the mammo-
histogram bins. If the comparison is made using sub-sampled graphic density is only moderate. 39 The same study also
ROIs (64X64), the CAD response time can be reduced to 10 showed very poor agreement among observers in use of the
s per query mammographic ROI. category "heterogeneous" breast. Since the DDSM density

rating was reported by several different radiologists at vari-

IV. DISCUSSION ous clinical sites, it is expected that any CAD tool developed
on the data set will be more fault-tolerant than a CAD tool

In this study, we presented a knowledge-based mass de- developed based on cases collected from a single site and
tection scheme for screening mammograms. The proposed read by a single radiologist. However, this issue needs care-
CAD scheme is designed to provide a prediction regarding ful investigation.
the presence or absence of a mass in a query mammographic The main innovation of this study is the application of the
region based on similar cases stored in the system's knowl- mutual information as the similarity metric in a knowledge-
edge databank. In its present state, the CAD scheme can based system. MI is a statistical tool that measures to what
function as an interactive tool to help radiologists analyze degree one image can be predicted from another. In image
mammographic regions that attract visual attention. How- databases, similarity is typically feature-based and often de-
ever, the proposed algorithm could be combined with other mands substantial image preprocessing. In contrast, the MI
mass detection schemes for evidence-based reduction of between two images is calculated directly without the burden
false positive CAD cues. Based on our study, the system was and potential variability of segmentation, object recognition,
able to maintain 90% sensitivity while effectively eliminat- and feature selection. Therefore, critical CAD issues such as
ing 65% of the normal regions. The performance was con- optimized feature selection and merging are bypassed in the
sistent for both malignant and benign masses. Since breast proposed KB-CAD system. Considering the difficulty of the
masses span a wide range of shapes, sizes, and contrast, the mass detection task, the presented concept could be general-
performance of a knowledge-based CAD scheme can be eas- izable to other imaging modalities and diagnostic tasks.
ily compromised if its knowledge databank is limited. Our However, special attention is required when selecting certain
CAD scheme was developed and evaluated based on a large implementation parameters. Our study showed that param-
number of examples from a publicly available database. It eters such as the image sub-sampling factor and the number
has been reported that the database contains really challeng- of histogram bins used to estimate the MI affect the overall
ing cases.3 8 Overall, the estimated performance of our CAD performance of the detection scheme. For the detection of
scheme compares favorably with published results from mammographic masses, if the number of histogram bins is
other CAD systems. 14' 28 However, direct comparison is not kept reasonably low, then the overall ROC performance of
feasible since the results were obtained from different data- the system remains very robust to image sub-sampling. Con-
bases. Further studies are needed to evaluate our approach in tinuing research on the formulation of information-theoretic
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